

A modern HTTP accelerator
for content providers

Leszek Urbański
Trader Media East Competence Center

PLNOG 4 – Warsaw, 2010-03-05

Varnish

● a state-of-the-art reverse proxy and cache

● open source, initially developed for a
Norwegian tabloid “Verdens Gang” in 2006

● Poul-Henning Kamp – architect and lead
developer

● Linpro AS

Varnish

● used by TOP100 sites
● Twitter
● Photobucket
● weather.com
● answers.com
● Hulu
● Wikia

● source: Ingvar Hagelund
http://users.linpro.no/ingvar/varnish/stats-2010-01-18.txt

http://users.linpro.no/ingvar/varnish/stats-2010-01-18.txt

Architecture

● Varnish does not fight the OS kernel!
● uses virtual memory, two main stevedores:

● mmap()
● malloc()

● scales well in SMP environments
● event-based acceptor
● multi-threaded worker model

● static workspaces – reused, operating on
pointers

Architecture

● SHM logging
● an mmap()ed file shared by all threads and logging

programs

● logging without syscalls!

memcpy(p + SHMLOG_DATA, t.b, l);
/* or */
vsnprintf((char *)(p + SHMLOG_DATA), mlen + 1, fmt, ap);

Architecture

● efficient object purging - “ban list”
● need to purge 200,000 objects from the cache

without overloading the server?

● Varnish keeps a list of purges
● every object is tested against the list, but only if

requested by a client
● if it matches, it is refreshed from a backend

purge req.http.host == foobar.com && req.url ~ ^/directory/.*$
purge obj.http.Cookie ~ example=true

Architecture

● results?
● microsecond-level response for cached objects

● good even for static content

● performance limit currently unknown :-)
● 75,000 reqs/s achieved at TMECC
● 143,000 reqs/s achieved by Kristian from Redpill-

Linpro

Architecture

● serving a request from cache:
<... futex resumed>) = 0 <0.629910>
futex(0x7f2a577fe2e8, FUTEX_WAKE_PRIVATE, 1) = 0 <0.000011>
ioctl(9, FIONBIO, [0]) = 0 <0.000011>
read(9, "GET /logo.png HTTP/1.0\r\n (...) 8191) = 177 <0.000016>
clock_gettime(CLOCK_REALTIME, {1265632945, 828835974}) = 0 <0.000011>
clock_gettime(CLOCK_REALTIME, {1265632945, 828986444}) = 0 <0.000011>
clock_gettime(CLOCK_REALTIME, {1265632945, 829032564}) = 0 <0.000010>
writev(9, [{"HTTP/1.1"..., 8}, (...) 12912}], 32) = 13227 <0.000039>
clock_gettime(CLOCK_REALTIME, {1265632945, 830411262}) = 0 <0.000011>
close(9) = 0 <0.000019>
futex(0x44884bf4, FUTEX_WAIT_PRIVATE, 239, NULL <unfinished ...>

● 10 system calls, 4 for clock

Features

● run-time management and reconfiguration

$ telnet localhost 6082
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
vcl.list
200 23
active 7 boot

vcl.load new1 /etc/varnish/default.vcl
200 13
VCL compiled.
vcl.use new1
200 0

Features

● comprehensive logging and management
● varnishlog
● varnishncsa
● varnishtop
● varnishstat
● ...and more

Features

● logging examples
● tags

varnishtop -i RxURL

varnishtop -i TxURL

varnishtop -i RxHeader -I '^User-Agent'

varnishlog -c -o ReqStart 10.0.0.1

varnishlog -b -o TxHeader '^X-Forwarded-For: .*10.0.0.1'

Features

● varnishstat – real time statistics
client_conn 87737603 99.74 Client connections accepted
client_req 335496200 381.40 Client requests received
cache_hit 307936704 350.07 Cache hits
cache_hitpass 811746 0.92 Cache hits for pass
backend_conn 12311926 14.00 Backend conn. success
n_object 549675 . N struct object
n_wrk 100 . N worker threads
n_expired 23826372 . N expired objects
n_lru_nuked 0 . N LRU nuked objects
n_wrk_failed 0 0.00 N worker threads not created
s_req 335510357 381.41 Total Requests
s_pass 2947900 3.35 Total pass
s_fetch 27317481 31.05 Total fetch
sma_nbytes 6661407561 . SMA outstanding bytes
sma_balloc 2173616292374 . SMA bytes allocated
sma_bfree 2166954884813 . SMA bytes free
backend_req 27318738 31.06 Backend requests made
esi_parse 0 0.00 Objects ESI parsed (unlock)
esi_errors 0 0.00 ESI parse errors (unlock)

Features

● timing information
 type XID start time

830 ReqEnd c 877345549 1233949945.075706005
1233949945.075754881 0.017112017 0.000022888 0.000025988

end time accept()-processing processing-delivery delivery time

Features

● backend load balancing – directors
● round-robin
● random
● client (trunk)
● URL hashing (trunk)

● grace
● URL serialization
● IPv6 support

Features

● Edge Side Includes
● a markup language for dynamic content assembly

● also used by Akamai, IBM WebSphere, F5

● without ESI: page-level caching decisions

● with ESI: a page can be split into separate blocks
and assembled by the cache server

Features

● VCL – Varnish Configuration Language
● a domain-specific language
● translated to C and compiled
● dynamically loaded
● similar to C, Perl
● = == ! && || ~ !~
● character escaping like in URLs: %nn
● no user-definied variables, use HTTP headers:

set req.http.something = "";
unset req.http.something;

Features

● VCL – Varnish Configuration Language
● “normal” “concatenated” “strings” or

{"string
string
"}

synthetic { “string” }

● if () {} elsif {}
● no loops
● user defined subroutines
● regsub(), regsuball()

Features

● VCL – Varnish Configuration Language
● ACLs

acl localnet {
“localhost”;
“10.0.0.0/24”;
! “10.0.0.1”;

}

if (client.ip ~ localnet) {
do_magic;

}

● if everything else fails... embedded C!

VCL

● request path
● vcl_recv
● vcl_pipe
● vcl_pass
● vcl_hash
● vcl_{hit,miss}
● vcl_fetch
● vcl_deliver
● http://varnish-cache.org/wiki/VCLExampleDefault

● this graph is oversimplified!

http://varnish-cache.org/wiki/VCLExampleDefault

VCL

● restarts
● the “restart” keyword turns the request all the

way back to vcl_recv, available everywhere

sub vcl_fetch {
 if (obj.status >= 500) {
 restart;
 }
}

VCL

● restarts
● the “restart” keyword – you can even try another

data center

sub vcl_recv {
 if (req.restarts == 0) {
 set req.backend = data_center_1;
 } elsif (req.restarts == 1) {
 set req.backend = data_center_2;
 }
}

VCL examples

● purging, “the squid way”
sub vcl_recv {

if (req.request == "PURGE") {
 if (!client.ip ~ purge) {
 error 405 "Not allowed";
 }
 lookup;
 }
}
sub vcl_hit {

if (req.request == "PURGE") {
 set obj.ttl = 0s;
 error 200 "Purged";
}

}
sub vcl_miss {

if (req.request == "PURGE") {
 error 404 "Not found";
}

}

VCL examples

● URL rewriting
if (req.http.host ~ "^(www\.)?foo" && req.url ~ "^/images/") {
 set req.http.host = "images.foo";
 set req.url = regsub(req.url, "^/images/", "/");
}

● redirects (a bit of a hack)
sub vcl_recv {
 if (req.http.host = "^(www\.)?foo.com" && req.http.User-Agent ~

"iPhone|Nokia|Motorola") {
 error 701 "Moved temporarily";
 }
}
sub vcl_error {
 if (obj.status == 701) {
 set obj.http.Location = "http://m.foo.com/";
 set obj.status = 302;
 deliver;
 }
}

VCL examples

● cookie based hashing
sub vcl_hash {

if (req.http.Cookie ~ "language=esperanto") {
 set req.hash += "LangEsperanto";

}
}

● result: a separate cached version of the object for
requests with Cookie: language=esperanto;

● extracting the value of a cookie
● nothing more than a regexp

regsub(req.http.Cookie, "^.*?cookie=([^;]*);*.*$", "\1");

Best practices

● object TTL control – headers from backend
(a.k.a. RFC 2616)
● considered in the following order:
● Cache-Control: s-maxage=<relative time>
● Cache-Control: max-age=<relative time>
● Varnish ignores all other Cache-Control headers

(unless told otherwise in VCL)
● Expires: absolute time, requires synced clocks

Best practices

● object TTL control – VCL
sub vcl_hit {

if (req.http.host ~ “^images\.”) {
 if (obj.hits > 5 && obj.hits < 10) {
 set obj.ttl = 8h;
 } elsif (obj.hits >= 10) {

 set obj.ttl = 2d;
 }
}

}

● Varnish sets the Age: header

● if in doubt, check varnishlog
● TTL tag

● object TTL control – VCL● object TTL control – VCL

Best practices

● caching policy

● Vary

● Content-Length

Best practices

● compression
● Varnish leaves compression up to the backends

● gzip, deflate, none – data set * 3

● normalize Accept-Encoding from browsers

Best practices

● sanitize request headers
● we've had requests from a partner coming in to

“http://our.com/?http://another.com/.*”
if (req.url ~ "^/\?http://") {
 set req.url = regsub(req.url, "\?http://.*", "");
}

● cache hit ratio went from 92% to 94%

● hit ratio and backend requests: 1% is half of 2%!

Best practices

● test
● wget --save-headers
● curl -i
● LWP: GET -USsed
● caveat: lwp-request does: “GET http://foo/bar”

OS environment

● forget about 32-bit
● malloc() better than mmap() for in-memory

cache sets
● sometimes better for larger-than-memory

cache sets on Linux (YMMV)
● Varnish on virtualized guests?

● slight latency difference
● can be an issue for on-line auction sites

OS environment

● Virtualization
● Varnish on a standalone system

OS environment

● Virtualization
● Varnish on a Xen domU with pinned vcpus

OS environment

● I/O related tuning on Linux
● set vm.swappiness to 0
● /var/lib/varnish/$HOSTNAME/_.vsl – the SHM log
● put the SHM log on tmpfs
● anticipatory elevator best on HDDs, noop on SSDs
● use ext2
● noatime
● swap striping
● iSCSI is great for logs

OS environment

● network tuning
● run NTP

● check if your load balancer uses keep-alive

● /proc/sys/net – don't tune if you don't know what
you're doing

Thank you

Questions?

Sources

● http://varnish-cache.org/
● TMECC VCL configs
● Wikia VCL configs
● http://kristian.blog.linpro.no/
● http://ingvar.blog.linpro.no/
● #varnish
● unabridged version of this presentation

available at: http://slideshare.net/tgr1

http://varnish-cache.org/
http://kristian.blog.linpro.no/
http://ingvar.blog.linpro.no/
http://slideshare.net/tgr1

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

