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Varnish

● a state-of-the-art reverse proxy and cache

● open source, initially developed for a 
Norwegian tabloid “Verdens Gang” in 2006

● Poul-Henning Kamp – architect and lead 
developer

● Linpro AS



  

Varnish

● used by TOP100 sites
● Twitter
● Photobucket
● weather.com
● answers.com
● Hulu
● Wikia

● source: Ingvar Hagelund 
http://users.linpro.no/ingvar/varnish/stats-2010-01-18.txt

http://users.linpro.no/ingvar/varnish/stats-2010-01-18.txt


  

Architecture

● Varnish does not fight the OS kernel!
● uses virtual memory, two main stevedores:

● mmap()
● malloc()

● scales well in SMP environments
● event-based acceptor
● multi-threaded worker model

● static workspaces – reused, operating on 
pointers



  

Architecture

● SHM logging
● an mmap()ed file shared by all threads and logging 

programs

● logging without syscalls!

memcpy(p + SHMLOG_DATA, t.b, l);
/* or */
vsnprintf((char *)(p + SHMLOG_DATA), mlen + 1, fmt, ap);



  

Architecture

● efficient object purging - “ban list”
● need to purge 200,000 objects from the cache 

without overloading the server?

● Varnish keeps a list of purges
● every object is tested against the list, but only if 

requested by a client
● if it matches, it is refreshed from a backend

purge req.http.host == foobar.com && req.url ~ ^/directory/.*$
purge obj.http.Cookie ~ example=true



  

Architecture

● results?
● microsecond-level response for cached objects

● good even for static content

● performance limit currently unknown :-)
● 75,000 reqs/s achieved at TMECC
● 143,000 reqs/s achieved by Kristian from Redpill-

Linpro



  

Architecture

● serving a request from cache:
<... futex resumed> )       = 0 <0.629910>
futex(0x7f2a577fe2e8, FUTEX_WAKE_PRIVATE, 1) = 0 <0.000011>
ioctl(9, FIONBIO, [0])      = 0 <0.000011>
read(9, "GET /logo.png HTTP/1.0\r\n (...) 8191) = 177 <0.000016>
clock_gettime(CLOCK_REALTIME, {1265632945, 828835974}) = 0 <0.000011>
clock_gettime(CLOCK_REALTIME, {1265632945, 828986444}) = 0 <0.000011>
clock_gettime(CLOCK_REALTIME, {1265632945, 829032564}) = 0 <0.000010>
writev(9, [{"HTTP/1.1"..., 8}, (...) 12912}], 32) = 13227 <0.000039>
clock_gettime(CLOCK_REALTIME, {1265632945, 830411262}) = 0 <0.000011>
close(9)                    = 0 <0.000019>
futex(0x44884bf4, FUTEX_WAIT_PRIVATE, 239, NULL <unfinished ...>

● 10 system calls, 4 for clock



  

Features

● run-time management and reconfiguration

$ telnet localhost 6082
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
vcl.list
200 23
active          7 boot

vcl.load new1 /etc/varnish/default.vcl
200 13
VCL compiled.
vcl.use new1
200 0



  

Features

● comprehensive logging and management
● varnishlog
● varnishncsa
● varnishtop
● varnishstat
● ...and more



  

Features

● logging examples
● tags

varnishtop -i RxURL

varnishtop -i TxURL

varnishtop -i RxHeader -I '^User-Agent'

varnishlog -c -o ReqStart 10.0.0.1

varnishlog -b -o TxHeader '^X-Forwarded-For: .*10.0.0.1'



  

Features

● varnishstat – real time statistics
client_conn          87737603        99.74 Client connections accepted
client_req          335496200       381.40 Client requests received
cache_hit           307936704       350.07 Cache hits
cache_hitpass          811746         0.92 Cache hits for pass
backend_conn         12311926        14.00 Backend conn. success
n_object               549675          .   N struct object
n_wrk                     100          .   N worker threads
n_expired            23826372          .   N expired objects
n_lru_nuked                 0          .   N LRU nuked objects
n_wrk_failed                0         0.00 N worker threads not created
s_req               335510357       381.41 Total Requests
s_pass                2947900         3.35 Total pass
s_fetch              27317481        31.05 Total fetch
sma_nbytes         6661407561          .   SMA outstanding bytes
sma_balloc       2173616292374          .   SMA bytes allocated
sma_bfree        2166954884813          .   SMA bytes free
backend_req          27318738        31.06 Backend requests made
esi_parse                   0         0.00 Objects ESI parsed (unlock)
esi_errors                  0         0.00 ESI parse errors (unlock)



  

Features

● timing information
           type  XID    start time

830 ReqEnd       c 877345549 1233949945.075706005 
1233949945.075754881 0.017112017 0.000022888 0.000025988

end time accept()-processing  processing-delivery  delivery time



  

Features

● backend load balancing – directors
● round-robin
● random
● client (trunk)
● URL hashing (trunk)

● grace
● URL serialization
● IPv6 support



  

Features

● Edge Side Includes
● a markup language for dynamic content assembly

● also used by Akamai, IBM WebSphere, F5

● without ESI: page-level caching decisions

● with ESI: a page can be split into separate blocks 
and assembled by the cache server



  

Features

● VCL – Varnish Configuration Language
● a domain-specific language
● translated to C and compiled
● dynamically loaded
● similar to C, Perl
● =  ==  !  &&  ||  ~  !~
● character escaping like in URLs: %nn
● no user-definied variables, use HTTP headers:

set req.http.something = "";
unset req.http.something;



  

Features

● VCL – Varnish Configuration Language
● “normal” “concatenated” “strings” or

{"string
string
"}

synthetic { “string” }

● if () {} elsif {}
● no loops
● user defined subroutines
● regsub(), regsuball()



  

Features

● VCL – Varnish Configuration Language
● ACLs

acl localnet {
“localhost”;
“10.0.0.0/24”;
! “10.0.0.1”;

}

if (client.ip ~ localnet) {
do_magic;

}

● if everything else fails... embedded C!



  

VCL

● request path
● vcl_recv
● vcl_pipe
● vcl_pass
● vcl_hash
● vcl_{hit,miss}
● vcl_fetch
● vcl_deliver
● http://varnish-cache.org/wiki/VCLExampleDefault

● this graph is oversimplified!

http://varnish-cache.org/wiki/VCLExampleDefault


  

VCL

● restarts
● the “restart” keyword turns the request all the 

way back to vcl_recv, available everywhere

sub vcl_fetch {
  if (obj.status >= 500) {
    restart;
  }
}



  

VCL

● restarts
● the “restart” keyword – you can even try another 

data center

sub vcl_recv {
  if (req.restarts == 0) {
    set req.backend = data_center_1;
  } elsif (req.restarts == 1) {
      set req.backend = data_center_2;
  }
}



  

VCL examples

● purging, “the squid way”
sub vcl_recv {

if (req.request == "PURGE") {
      if (!client.ip ~ purge) {
        error 405 "Not allowed";
      }
   lookup;
   }
}
sub vcl_hit {

if (req.request == "PURGE") {
  set obj.ttl = 0s;
  error 200 "Purged";
}

}
sub vcl_miss {

if (req.request == "PURGE") {
  error 404 "Not found";
}

}



  

VCL examples

● URL rewriting
if (req.http.host ~ "^(www\.)?foo" && req.url ~ "^/images/") {
  set req.http.host = "images.foo";
  set req.url = regsub(req.url, "^/images/", "/");
}

● redirects (a bit of a hack)
sub vcl_recv {
  if (req.http.host = "^(www\.)?foo.com" && req.http.User-Agent ~ 

"iPhone|Nokia|Motorola") {
    error 701 "Moved temporarily";
  }
}
sub vcl_error {
  if (obj.status == 701) {
    set obj.http.Location = "http://m.foo.com/";
    set obj.status = 302;
    deliver;
  }
}



  

VCL examples

● cookie based hashing
sub vcl_hash {

if (req.http.Cookie ~ "language=esperanto" ) {
    set req.hash += "LangEsperanto";

}
}

● result: a separate cached version of the object for 
requests with Cookie: language=esperanto;

● extracting the value of a cookie
● nothing more than a regexp

regsub(req.http.Cookie, "^.*?cookie=([^;]*);*.*$", "\1");



  

Best practices

● object TTL control – headers from backend 
(a.k.a. RFC 2616)
● considered in the following order:
● Cache-Control: s-maxage=<relative time>
● Cache-Control: max-age=<relative time>
● Varnish ignores  all other Cache-Control headers 

(unless told otherwise in VCL)
● Expires: absolute time, requires synced clocks



  

Best practices

● object TTL control – VCL
sub vcl_hit {

if (req.http.host ~ “^images\.”) {
  if (obj.hits > 5 && obj.hits < 10) {
    set obj.ttl = 8h;
  } elsif (obj.hits >= 10) {

 set obj.ttl = 2d;
  }
}

}

● Varnish sets the Age: header

● if in doubt, check varnishlog
● TTL tag

● object TTL control – VCL● object TTL control – VCL



  

Best practices

● caching policy

● Vary

● Content-Length



  

Best practices

● compression
● Varnish leaves compression up to the backends

● gzip, deflate, none – data set * 3

● normalize Accept-Encoding from browsers



  

Best practices

● sanitize request headers
● we've had requests from a partner coming in to 

“http://our.com/?http://another.com/.*”
if (req.url ~ "^/\?http://") {
  set req.url = regsub(req.url, "\?http://.*", "");
}

● cache hit ratio went from 92% to 94%

● hit ratio and backend requests: 1% is half of 2%!



  

Best practices

● test
● wget --save-headers
● curl -i
● LWP: GET -USsed
● caveat: lwp-request does: “GET http://foo/bar”



  

OS environment

● forget about 32-bit
● malloc() better than mmap() for in-memory 

cache sets
● sometimes better for larger-than-memory 

cache sets on Linux (YMMV)
● Varnish on virtualized guests?

● slight latency difference
● can be an issue for on-line auction sites



  

OS environment

● Virtualization
● Varnish on a standalone system



  

OS environment

● Virtualization
● Varnish on a Xen domU with pinned vcpus



  

OS environment

● I/O related tuning on Linux
● set vm.swappiness to 0
● /var/lib/varnish/$HOSTNAME/_.vsl – the SHM log
● put the SHM log on tmpfs
● anticipatory elevator best on HDDs, noop on SSDs
● use ext2
● noatime
● swap striping
● iSCSI is great for logs



  

OS environment

● network tuning
● run NTP

● check if your load balancer uses keep-alive

● /proc/sys/net – don't tune if you don't know what 
you're doing



  

Thank you

Questions?



  

Sources

● http://varnish-cache.org/
● TMECC VCL configs
● Wikia VCL configs
● http://kristian.blog.linpro.no/
● http://ingvar.blog.linpro.no/
● #varnish
● unabridged version of this presentation 

available at: http://slideshare.net/tgr1

http://varnish-cache.org/
http://kristian.blog.linpro.no/
http://ingvar.blog.linpro.no/
http://slideshare.net/tgr1
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