Improving network availability through the graceful shutdown of BGP sessions

PLNOG, Krakow, September 2008

Bruno Decraene France Telecom (bruno.decraene@orange-ftgroup.com)
Pierre François UCL (pierre.francois@uclouvain.be)
Agenda

Why? (Problem statement)
What? (Requirements)
How? (A solution)
How good? (Test bed evaluation)
Conclusion
Why improving network availability?

- For new applications, customers are requesting Service Providers tighter SLA requirements, especially regarding network availability.
 - e.g., VoIP, online gaming, corporate mission critical applications

- E.g. typical VoIP requirement is a traffic restoration time below 100 or 200 ms after the failure.
How to improve network availability?

- **Failures avoidance** at the IP layer
 - Link: protection below the IP/MPLS layer
 - Node: state of the art hardware & software router, extensive testing.

- **Local concealment**
 - Graceful Restart, Non Stop Routing, In Service Software Upgrade (ISSU).

- **Local reaction**
 - MPLS Fast ReRoute, IP Fast reroute

- **Global reaction**
 - Usual routing convergence: IGP, BGP, IGP+ BGP

- **Mixed of global & local reaction**
 - IGP routing convergence + BGP local reaction
 - BGP protection could be pre-computed & pre-installed in the FIB (e.g. BGP PIC edge)

- **Global anticipation**
 - Make before break
How to improve network availability?

- Most solutions are complementary with different:
 - Applicability: forwarding preservation, type of failure, existence of an alternate path…
 - Cost: states, hardware, implementation, operation…
 - Result: (expected) traffic loss
Network anticipation: make before break

- **Applicability is significant**: every time the BGP session needs to be shutdown
 - Prefix limit reached, session reloaded, unrecognized attribute…
 - Maintenance operations which affect forwarding
 - Most hardware upgrade: router, line card, link
 - Some software upgrades
 - → same applicability than the BGP cease message, but with a different result.

- **Low cost** since speed is not required
 - No need for fast hardware or software, redundant states

- **Possibly very good results**
 - Perfect make before break could achieve 0 packet loss

- **Still does not address all cases** as it requires:
 - a backup path → subset of customers / peers
 - anticipation → subset of events
Graceful shutdown

- Shutdown allowing your peer (router/AS) to gracefully handle the loss.
 - Typically give them some time to accommodate

- Not something new in general:
 - Link state IGP:
 - link max metric, node overload bit (IS-IS)
 - (non urgent) loop free convergence techniques
 - e.g. smart multiple metric increments
 - MPLS, GMPLS: IETF WG draft
 - "Graceful Shutdown in MPLS and Generalized MPLS"
BGP Graceful shutdown

- Currently no agreed procedure for BGP although:
 - BGP is widely used
 - Internet
 - BGP/MPLS VPN services (L3 & L2)
 - BGP routing convergence could be "long"
 - Re-routing of 1 prefix can require multiple steps:
 - Path vector protocol & any router may hide back up paths
 - → multiple messages & best path selections required
 - Hundreds of thousands of routes involved: 280,000 prefixes for Internet
 - → 120,000 BGP updates required to update the RIB
 - With an average of 2.3 prefixes per update
 - → 30 seconds required to update the FIB
 - 300,000 prefixes * 100us/prefix
 - BGP/MPLS VPN usually have bigger scaling numbers
 - Requires bi-lateral / multi-lateral agreements between ASes
 - Cannot be done by an ISP on its own.
Legend:
L : loopback address
L.x: 10.0.1.x/32
Agenda

Why? (Problem statement)
What? (Requirements)
How? (A solution)
How good? (Test bed evaluation)
Conclusion
BGP Graceful shutdown requirements

- In short: minimal / no packet loss when shutting down a BGP session.
 - Providing an alternate path is available in the AS.
 - Otherwise, the path should still be usable until the forwarding failure,
 - Just like today.

- **Should handle common iBGP topologies:**
 - iBGP full mesh, iBGP Route Reflector, hierarchical BGP RR, BGP confederation

- **Regarding eBGP topologies,** the target use case is two ASes directly interconnected through multiple ASBRs
 - Typically a customer dual attached to a provider.
 - Topologies involving more than 2 ASes are out of scope.
 - e.g. a multi-homed AS requiring Internet wide convergence:
BGP Graceful shutdown requirements

- Desired properties (in descending order of importance):
 1. minimize loss of connectivity
 2. applicable to a wide range of networks, BGP topologies and usages
 3. minimize transient forwarding loop
 4. minimize additional BGP load / impact

- More details in: draft-decraene-bgp-graceful-shutdown-requirements-00
Agenda

Why? (Problem statement)

What? (Requirements)

How? (A solution)
 - LoC during planned maintenance
 - G-shut for outbound & inbound traffic
 - Deployment consideration
 - Further options

How good? (Test bed evaluation)

Conclusion
LoC during planned maintenance

Potentially large number of p/P
G-Shut: Outbound traffic

\[
p/P\text{ in : } lp = 100
\]

\[
p/P\text{ out : } lp = 0
\]

\[
p/P : lp = 90
\]
G-Shut: Inbound traffic

- Need to trigger outbound g-shut at the other side of the peering link
 - Use of a specific BGP community

z/Z:
tag community: GSHUT

iBGP out-policy: match GSHUT remove community set local pref 0

No need for action from the customer at maintenance time
Preconfigured policies on customer's & SP ASBRs

- Preconfigured on ASBRs
 - Outbound policy on iBGP sessions:
 - G-shut community \(\rightarrow\) set local_pref = 0
 - Remove g-shut community

```
[edit protocols bgp group ibgp]
JM7B@p-jm7b# show type internal;
local-address 10.0.1.2;
export allow-BGP-gshut;
neighbor 10.0.1.6;

[edit policy-options]
JM7B@p-jm7b# show policy-statement allow-BGP-gshut {
  term 1 {
    from {
      protocol bgp;
      community gshut;
    }
    then {
      local-preference 0;
      community delete gshut;
    }
  }
  community gshut members 3215:6666;
```
SP policies at maintenance time

1. Apply an outbound & inbound policy on the eBGP session to be shutdown.
 - Add G-shut community
2. Wait for BGP convergence
3. Shutdown the BGP session (as usual)

```
[edit protocols bgp group customer-65511]
JM7B@p-jm7b# show type external;
export set-BGP-gshut;import set-BGP-gshut;
peer-as 65511;
neighbor 10.0.20.6;

[edit policy-options]
JM7B@p-jm7b# show policy-statement set-BGP-gshut {
   term 1 {
      then {
         community add gshut;
      }
   }
   community gshut members 3215:6666;
```
Deployment considerations

- One g-shut community value per customer/peer/provider is
 - difficult to manage
 - error prone
- **G-shut community should be standardized**

- Good deployment properties:
 - Incremental deployment possible
 - per eBGP session
 - Incremental gain

- Can be implemented now by ISPs through configuration
 - As detailed in draft-francois-bgp-gshut-00.txt
 - Vendors could help make it simpler
 - by automating this before sending the BGP cease message
Is g-shut enough? – micro-forwarding loop

- "Micro" forwarding loops are still possible during iBGP convergence.
- Caused by transient inconsistent FIBs between routers along the forwarding path
 - No atomic change at the network scope

Possible solutions:
- Simultaneous RIB/FIB update
- Order RIB/FIB update across routers of an AS
- Tunnels between ASBR
 - MPLS LSP, GRE, L2TP…
 - Available now
Is g-shut enough? – diversity in iBGP signaling paths

- BGP graceful shutdown tries to avoid abrupt route withdrawal

- But even a BGP update can initiate loss of connectivity
 - A route update can be translated into a withdrawal along the iBGP signaling path
 - Both messages (update & withdraw) can use two different iBGP signaling paths and the withdraw can possibly be quicker.

- Example:
 - Full mesh iBGP
 - Primary path (F) selected on the local pref
 - eBGP session brings UP on router F

- A solution: BGP external best
 - draft-marques-idr-best-external-00.txt
 - Instead of withdrawing a route, a router advertises its best external route
 - Can be different from its overall best.
 - Available now in some implementation.
Is g-shut enough? – convergence concealment

p/P : \(lp = 100 \) nh : self

p/P : \(lp = 100 \) nh : ASBR1 (cust)

p/P : \(lp = 50 \) nh : self (peer)

Abrupt Withdraw sent due to policies

SHOULD use loc-pref value that conceals convergence within customer paths
Agenda

Why? (Problem statement)
How? (A solution)
What? (Requirements)
How good? (Test bed evaluation)
Conclusion
Tests goals

- **Evaluate** the BGP graceful shutdown solution
 - Check correctness
 - Evaluate the gain

- **Focus on the gain brought by BGP g-shut**, everything else being equal.
 - Absolute convergence times will be very hardware and software dependant.
Legend
10.0.3.x/32 Loopback L.x
- eBGP
- iBGP client
- iBGP

ISP AS
Customer AS
Cluster-id: 10.0.3.8
Cluster-id: 10.0.3.6
Cluster-id: 10.0.3.4
Cluster-id: 10.0.3.13
AS 2222
AS 100
2.2.1.0/24 to 2.2.10.0/24
1.1.1.0/24 to 1.1.10.0/24
BGP sessions
P-linux
iBGP client
AS 200
RT 104.1
RT 104.2
Testbed

- Real / commercial routers used
 - Packets forwarding done in hardware
 - not impact on control plane CPU / BGP convergence

- All routers of the test bed will be emulated on a single box by using Virtual Router
 - Not possible / too costly to have 15 (identical) commercials routers
 - PRO: Perfect time synchronization.
 - CON: Virtual Router shares hardware resources (CPU/RAM)
 - Care taken to avoid overloading the router.
 - Can affect absolute times
 - however tests were hardware dependant,
Testbed (very) specifics

- **BGP load**
 - BGP loaded with 6,000 routes external to the testbed
 - extracted from the Internet full routing table
 - advertised by the ISP to the customer.
 - No route flapping.

- **Router**
 - Juniper M7i, RE-5.0, Junos 7.1B2.2

- **Customer traffic**
 - Agilent Router Tester N2X version 6.5, build 4.10B
 - 5 bidirectional flows of 1000 packets per second \(\rightarrow\) +/- 1ms accuracy
 - Low TTL (25) to avoid forwarding loops, delayed packets, overloaded interfaces.

- **G-shut BGP policies only**
 - No BGP external best, no convergence concealment.
Tests plan

- Multiple topologies tested because results are expected to be topology dependant.

- 2 eBGP topology tested
 - “V”: 1 CE – 2 PE
 - “U”: 2 CE – 2 PE

- 4 iBGP topology tested:
 - full mesh
 - Route Reflectors (RR)
 - Hierarchical RR
 - With different cluster-id
 - With identical cluster-id

- 2 BGP best path decision criteria
 - IGP cost (hot potato routing)
 - Local Pref (policy routing)

- 3 forwarding types:
 - IP hop by hop (pervasive BGP)
 - MPLS (BGP free core)
 - VPN (L3 BGP/MPLS)
Tests plan

- Each test repeated 5 times ➔ keeping mean value

- 2 Events:
 - eBGP down (beginning of maintenance)
 - eBGP up (end of maintenance)

- Each topology is tested twice:
 - Vanilla BGP
 - BGP graceful shutdown

- 270 tests performed: 5 times * 27 topologies * 2 (UP/DOWN)
Summary of tests results

- Average gain is very significant
 - 100% for MPLS and VPN forwarding: 0 packet loss
 - 89% for IP forwarding
Agenda

Why? (Problem statement)
What? (Requirements)
How? (A solution)
How good? (Test bed evaluation)

Conclusion
Conclusion

- High availability is a strong requirement for IP/MPLS networks but standard BGP convergence does not meet such requirement.

- Multiple solutions to improve availability
 - Mostly complementary solutions

- BGP graceful shutdown can improve network availability:

- Applicable to a subset of cases: alternate path, anticipation

- 0 packet loss is achievable:
 - BGP graceful shutdown procedures
 - Tunnels between ASBR (e.g., MPLS LSP)
 - BGP external best

- Applicable now by ISP but vendors could help automating it.
Thank you!

Questions & feedback welcomed
References

- http://bgp.potaroo.net

- Projecting Future IPv4 Router Requirements from Trends in Dynamic BGP Behaviour
 - Geoff Huston, Grenville Armitage
 - Australian Telecommunication Networks & Applications Conference (ATNAC), Australia, December 2006

- Graceful Shutdown in MPLS and Generalized MPLS Traffic Engineering Networks
 - [draft-ietf-ccamp-mpls-graceful-shutdown-06.txt](https://datatracker.ietf.org/doc/draft-ietf-ccamp-mpls-graceful-shutdown-06.txt)

- Disruption-free topology reconfiguration in OSPF Networks.
 - Pierre François, Mike Shand and Olivier Bonaventure

- Avoiding transient loops during the convergence of link-state routing protocols.
 - Pierre Francois, Olivier Bonaventure.
 - IEEE/ACM Transactions on Networking, December 2007
References

- Requirements for the graceful shutdown of BGP sessions
 - draft-decraene-bgp-graceful-shutdown-requirements-00.txt

- Graceful BGP session shutdown
 - draft-francois-bgp-gshut-00.txt

- Avoiding disruptions during maintenance operations on BGP sessions
 - Pierre Francois, Pierre-Alain Coste, Bruno Decraene and Olivier Bonaventure.

- Advertisement of the best-external route to IBGP
 - draft-marques-idr-best-external-00.txt

- Intermediate System to Intermediate System (IS-IS) Transient Blackhole Avoidance
 - RFC 3277