
New England Java Users Group September 2009

Mark Richards
Director and Sr. Architect, Collaborative Consulting, LLC
Author of Java Message Service 2nd Edition (O’Reilly)

The Art of Messaging

Mark Richards
Director and Sr. Architect, Collaborative Consulting, LLC
Author of Java Message Service 2nd Edition (O’Reilly)

The Art of Messaging
Designing Effective Messaging Systems

Introduction to JMSAgenda

topics

messaging use cases

message design considerations

the jms api and basic messaging

a brief look at restful jms messaging

Roadmap

messaging use cases

Roadmap

primary messaging features

asynchronous requests - never having to wait

guaranteed delivery - knowing it will definitely get there

load balancing - doing multiple things at once

Roadmap

heterogeneous integration

communicating with disparate components

Component
(Java)

Component
(C# / .NET)

Message
Channel

Roadmap

Message
Channel

Component
1

Component
2

Component
2

Component
2

Component
1

Component
2

reduced bottlenecks and
increased scalability / throughput

Component
1

Component
2

Roadmap

end user productivity
why make the user wait for long-running requests?

long
running

Component
1

Component
2

Message
Channel

Roadmap

architecture agility
agility through abstraction and decoupling

Message
Channel

Sending
Component

Component
B

Component
C

Component
A

Component
C

Roadmap

the jms api and basic messaging

Introduction to JMSMessaging Models

Publish and Subscribe

Subscriber Subscriber

Publisher

Topic

Point To Point

Sender

Receiver

Queue

Sender

Receiver

Queue

messaging models

Introduction to JMSMessage Structure

JMSDestination
JMSMessageID
JMSTimestamp
JMSCorrelationId
JMSPriority
…

Header

App-specific Property
JMS-extended Properties
Provider-specific Properties

Properties

Text-based Payload
Object-based payload
Map-based Payload
Bytes-based Payload
Stream-based Payload

Message Body

jms message structure

}

} Message
Header

Message
Payload

Introduction to JMSJMS Interfaces

Connection
Factory

Destination

JMS Provider (JNDI)

Connection Session
Message
Producer

Message
Consumer

Message

JMS Provider (JNDI)

jms api - generic interfaces

Introduction to JMS

Queue
Connection

Factory

Queue

JMS Provider (JNDI)

Queue
Connection

Queue
Session

Queue
Sender

Queue
Receiver

Message

JMS Provider (JNDI)

jms api - queue-based interfaces

Introduction to JMSJMS Interfaces

Topic
Connection

Factory

Topic

JMS Provider (JNDI)

Topic
Connection

Topic
Session

Topic
Publisher

Topic
Subscriber

Message

JMS Provider (JNDI)

jms api - topic-based interfaces

Introduction to JMSJMS Interfaces

messaging demo

messaging in java and groovy

Roadmap

messaging design considerations

Roadmap

message persistence

by default, all messages are marked as PERSISTENT

persistence is required to support guaranteed delivery

but, there are trade-offs to consider....

Roadmap

message persistence

IBM xSeries 360 4x8 RHEL4
WMQ6.0 2K MSG

Clients

Roadmap

message persistence

//can be set for all messages
QueueSender sender = session.createSender(request);
sender.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

//can be set for a single message

TextMessage msg = session.createTextMessage();
msg.setText(xml.toString());
sender.send(msg, DeliveryMode.NON_PERSISTENT, 4, 30000);

set through the message DeliveryMode

Roadmap

single queue design approach

public void onMessage(Message message) {
 try {
 String xml = ((TextMessage)message).getText();
 int type = message.getIntProperty("type");

 if (type == NEW_BOOK_ORDER) {
 orderProcessor.placeOrder(xml);
 } else if (type == ORDER_STATUS) {
 statusProcessor.checkOrderStatus(xml);
 } else if (type == CANCEL_ORDER) {
 cancelProcessor.cancelOrder(xml);
 } else {
 throw new Exception("Invalid Order Type: " + type);
 }
 } catch (Exception up) {
 ...
}

Roadmap

single queue design approach

Roadmap

single queue design approach

ease of maintenance

design simplicity

design flexibility

PLUS

decoupled processors

ease of testing

poor load balancing

poor response time

poor concurrency

MINUS

homogeneous
processors

poor overall agility

Roadmap

single queue design approach

Roadmap

single queue design approach

a better design...

Roadmap

single queue design approach

IBM xSeries 360 4x8 RHEL4
WMQ6.0 2K MSG

Roadmap

using message priority

Internet Web
Orders

msg

Batched B2B
Orders

msg
msg

msg
msg

Message
Listener

Message
Listener

Message
Listener

High Priority
processing time:
5 sec/msg

Low Priority
processing time:
30 sec/msg

3 concurrent listener threads

Roadmap

using message priority

let's do the math....

T1: 20 batched orders come in from the b2b portal at low priority
T2: 3 batched orders get picked up by listeners
T3: 5 web orders come in from web portal

==> web order 1: ~35 second response time
==> web order 2: ~35 second response time
==> web order 3: ~35 second response time
==> web order 4: ~40 second response time
==> web order 5: ~40 second response time

Consider separate queues, even for the same
type of message

T0: system is idle, queue is empty

Roadmap

a brief look at restful jms

Roadmap

java message service
vs.

web services

internal (inside the firewall): use JMS

external (outside the firewall): use Web Services

Roadmap

representational state transfer

architecture style where resources are accessed through
verbs and nouns and represented as documents:

HTTP GET http://hostname/customer/1234

resources
and

representations

what is it?

URI
universal
resource
identifier

where is it?

http methods
GET, POST,

PUT, DELETE

what action?

Roadmap

jms and rest

not a perfect match...

does a GET on a queue remove the next message from the
queue or just browse the next message?

does a DELETE action on a queue pull the message off or
delete the actual queue?

does a POST action on a queue send a message to a queue
or create a new (or temporary) queue?

Roadmap

jms rest vendor options

Roadmap

websphere mq mappings

HTTP header

text/plain or text/html

other media types

HTTP GET

HTTP POST

HTTP DELETE

HTTP PUT

MQMD headers

MQFMT_STRING (string msg)

MQFMT_NONE (binary msg)

MQGET with browse

MQPUT

MQGET

no mapping

http://hostname/msg/queue/queue1

Roadmap

activemq mappings

hidden post variables

any content type

HTTP GET

HTTP POST

HTTP DELETE

HTTP PUT

message header properties

TextMessage

receive() (for convenience)

send()

receive()

no mapping

http://hostname/approot/message/jms/queue1?type=queue

Roadmap

Restful JMS Demo

Roadmap

summary and closing

Roadmap

hands-on unconference topics

publish and subscribe messaging
sending images and documents
sending large messages (message chunking)
transacted sessions
messaging acknowledgement modes
durable and non-durable subscribers
request/reply messaging (message correlation)

messaging pitfalls and how to avoid them

 Java Message Service, 2nd Edition (Mark Richards, O’Reilly, 2009)
 http://oreilly.com/catalog/9780596522049/index.html

 JMS API
 http://java.sun.com/products/jms/index.jsp

 ActiveMQ
 http://activemq.apache.org

 Source Code
 http://www.wmrichards.com/nfjs

Summary

references

