
Java Developer Day 2009

Mark Richards
Director and Sr. Architect, Collaborative Consulting, LLC
Author of Java Message Service 2nd Edition (O’Reilly)

Common AntiPatterns
And How To Avoid Them

Mark Richards
Director and Sr. Architect, Collaborative Consulting, LLC
Author of Java Message Service 2nd Edition (O’Reilly)

Common Anti-Patterns
And How To Avoid Them

Introduction to JMSMessaging Models

repeatable processes that produce positive results

patterns

Process 1

Process 2

Process 3

Gateway External
Process

public class AccountData {

 public long acctId;

 public String acctName;

 public double balance;

 public long getAcctId() {
 return this.acctId;
 }
 ...
}

Introduction to JMSMessaging Models

things we repeatedly do that produce negative consequences

anti-patterns

 Obligatory subcontracting
 Funding me-too research
 Repackaging as original
 Analysis paralysis
 Cash cow
 Cost migration
 Crisis mode
 Design by committee
 Escalation of commitment
 Management by neglect
 Management by numbers
 Management by perkele
 Management by wondering
 Milk Monitor Promotion
 Moral hazard
 Mushroom management
 Stovepipe
 Vendor lock-in
 Violin string organization
 Puppet programming
 Copy and paste programming
 De-factoring
 Golden hammer
 Improbability factor
 Low hanging fruit
 Not built here
 Premature optimization
 Programming by permutation

Introduction to JMS

there are lots of anti-patterns...
 Reinventing the square wheel
 Reinventing the wheel
 Silver bullet
 Copper bullet
 Tester Driven Development
 Hostile testing
 Meta-testing
 Moving target
 Re-coupling
 Nurses-auditing-doctors
 Turkish hat reform
 Classpath hell
 Dependency hell
 DLL hell
 Extension conflict
 JAR hell
 Magic Bullet
 Chain Reaction
 Ivory Tower
 Buzzword-Driven Architecture
 Death march
 Groupthink
 Smoke and mirrors
 Software bloat
 Bystander apathy
 Napkin specification
 Phony requirements
 Retro-specification

 Abstraction inversion
 Ambiguous viewpoint
 Big ball of mud
 Blob
 Gas factory
 Input kludge
 Interface bloat
 Magic pushbutton
 Race hazard
 Railroaded solution
 Re-coupling
 Stovepipe system
 Staralised schema
 Anemic Domain Model
 BaseBean
 Call super
 Circle-ellipse problem
 Empty subclass failure
 God object
 Object cesspool
 Object orgy
 Poltergeists
 Sequential coupling
 Singletonitis
 Yet Another Useless Layer
 Yo-yo problem
 Accidental complexity
 Accumulate and fire

 Action at a distance
 Blind faith
 Boat anchor
 Bug magnet
 Busy spin
 Caching failure
 Cargo cult programming
 Checking type
 Code momentum
 Coding by exception
 Error hiding
 Expection handling
 Hard code
 Lava flow
 Loop-switch sequence
 Magic numbers
 Magic strings
 Monkey work
 Packratting
 Parallel protectionism
 Ravioli code
 Soft code
 Spaghetti code
 Wrapping wool in cotton
 Many others...

Economical
Organizational
Project Management
Analysis
Software Architecture
Software Development

Introduction to JMSMessage Structure
and lots of categories as well...

Methodological
Testing
Requirements Management
Quality Assurance
Configuration Management
Enterprise Architecture

Economical
Organizational
Project Management
Analysis
Software Architecture
Software Development

Introduction to JMSMessage Structure
and lots of categories as well...

Methodological
Testing
Requirements Management
Quality Assurance
Configuration Management
Enterprise Architecture

cargo cult programming

common anti-patterns
letʼs take a closer look at the following anti-patterns...

Introduction to JMSMessage Structure

lava flow

object orgy accidental complexity

the blobgolden hammer

Message Structure

cargo cult programming
anti-pattern

using patterns, methods, and techniques without understanding why

Message Structure

if (year == 2009 || month.startsWith("M")) {
 System.out.println("true");
} else {

 System.out.println("false");
}

cargo cult programming
anti-pattern

using patterns, methods, and techniques without understanding why

Message Structure

if (friday & name.startsWith("M")) {
 System.out.println("Yes");
} else {

 System.out.println("No");
}

if (year == 2009 | month.startsWith("M")) {
 System.out.println("true");
} else {

 System.out.println("false");
}

cargo cult programming
anti-pattern

using patterns, methods, and techniques without understanding why

Message Structure

@Transactional
public void placeOrder(Order order) {
 insertOrder(order);
 updateAccount(order);
 updateInventory(order);
}

cargo cult programming
anti-pattern

using patterns, methods, and techniques without understanding why

Will this work? What exactly are the default values
for the Spring @Transactional annotation?

Message Structure

avoidance techniques

don’t use a framework, product, or technology
without a reason for doing so

when you see some code you aren’t sure of, take the
time right then and there to understand it

most importantly, RTFM!!! (Read The F____ Manual)

take the time to read and understand about the
technology or framework you are using

Message Structure

lava flow anti-pattern
obsolete technologies and forgotten extensions leave hardened

globules of dead code in its wake

Message Structure

public void placeOrder(Order order) {
 insertOrder(order);
 updateInventory(order);

 //check for overstock discount and tax
 //checkOverstockDiscount(order);
 //calculateTax(order);

 processPayment(order);
}

lava flow anti-pattern
obsolete technologies and forgotten extensions leave hardened

globules of dead code in its wake

public void placeOrder(Order order) {
 insertOrder(order);
 updateInventory(order);

 //check for overstock discount and tax
 checkOverstockDiscount(order);
 calculateTax(order);

 processPayment(order);
}

lava flow anti-pattern
obsolete technologies and forgotten extensions leave hardened

globules of dead code in its wake

old reports converted reports

Message Structure

leverage version control to safely remove old code,
knowing it can easily be recovered if needed

test-driven development and meaningful regression tests
(with code coverage tools) helps to avoid this anti-pattern

the use of CDLs or interfaces can help avoid this
anti-pattern

utilize open source and commercial tools to detect dead
code (Eclipse, Aivosto, etc.)

avoidance techniques

INDEX

Message Structure

object orgy anti-pattern

objects are insufficiently encapsulated, resulting in unrestricted access
to their private parts

William Hogarth (1697-1764), The Orgy

public class Account {
 public BigDecimal balance;
 public String name;
 ...
}

Message Structure

object orgy anti-pattern

public class Account {
 public BigDecimal balance;
 public String name;
 ...

 public BigDecimal getBalance() {
 if (balance == null) {
 return new BigDecimal(0);
 } else {
 return balance;
 }
 }

 public void setBalance(BigDecimal bal) {
 ...
 }

}

Message Structure

object orgy anti-pattern

Message Structure

public class Account {
 private BigDecimal balance;
 private String name;
 ...

 public BigDecimal getBalance() {
 if (balance == null) {
 return new BigDecimal(0);
 } else {
 return balance;
 }
 }

 public void setBalance(BigDecimal bal) {
 ...
 }

}

object orgy anti-pattern

Message Structure

haste and apathy usually contribute to this anti-pattern -
avoid the shortcuts and always use encapsulation

avoidance techniques

INDEX

Message Structure

accidental complexity
anti-pattern

introducing non-essential complexity into a solution

Message Structure

accidental complexity
anti-pattern

Message Structure

public int adjustNumber(int x) {
 int y=x-(x-1) <= 0 ? 1 : x-(x-1);
 return x % ++y == 0
 ? x*++y/3*2 : ++x*--y-1;
}

accidental complexity
anti-pattern

Message Structure

public int doubleIfEven(int x) {
 if (x % 2 == 0)
 return x*2;
 else
 return x;
}

accidental complexity
anti-pattern

Message Structure

public int adjustNumber(int x) {
 int y=x-(x-1) <= 0 ? 1 : x-(x-1);
 return x % ++y == 0
 ? x*++y/3*2 : ++x*--y-1;
}

public int doubleIfEven(int x) {
 if (x % 2 == 0)
 return x*2;
 else
 return x;
}

accidental complexity
anti-pattern

Message Structure

essential complexity: we have a hard problem

accidental complexity: we have made a problem hard

“developers are drawn to complexity like moths to a flame -
frequently with the same result”

accidental complexity
anti-pattern

Message Structure

focus on the essential complexity and avoid “tricky code”

look for this anti-pattern in architecture, design, and
coding - it exists in all three!

avoidance techniques

frequent code reviews! Make sure you can read the code
your team members write

INDEX

Message Structure

golden hammer anti-pattern

using the same tool, product, or technique to solve every problem

Message Structure

golden hammer anti-pattern

using the same tool, product, or technique to solve every problem

Groovy

Correlate

Scala

CAL

Clojure

JRuby

Bistro

http://www.is-research.de/info/vmlanguages/

Message Structure

focus on Java the Platform, not Java the Language

avoidance techniques

embrace polyglot programming

END

avoid the "tower of babel" anti-pattern as a result!

Message Structure

the blob anti-pattern

an all encompassing class or component that knows too much and
does too much

Message Structure

a single class with a large number of attributes and/or methods
(60 or more is a good sign of a “blob”)

unrelated methods and attributes contained in a single class

the presence of a large “controller” class indicates a blob

the blob anti-pattern

an all encompassing class or component that knows too much and
does too much

Message Structure

factors that can lead to this anti-pattern...

lack of object-oriented skills on the team

lack of a solid software design and/or architecture

use of agile methodology techniques can sometimes
lead to this anti-pattern!

the blob anti-pattern

Message Structure

use a roles and responsibility model

make sure your team members have the proper level of
skill in object-oriented concepts

frequent code reviews can stop a “Blob” before
it gets too big

avoidance techniques

INDEX

Roadmap

summary and q&a

 AntiPatterns: Refactoring Software, Architectures, and
Projects in Crisis by William J. Brown et.al. (Wiley)

 http://en.wikipedia.org/wiki/Anti-pattern
 http://www.antipatterns.com/EdJs_Paper/Antipatterns.html
 http://c2.com/cgi/wiki?AntiPatternsCatalog
 http://sourcemaking.com/antipatterns
 Complete Slides - http://www.wmrichards.com/slides

Summary

references

