
The discovery and execution of 
entirely new classes of Web attacks 
in order to meet your girlfriend. 

Samy Kamkar 
samy@samy.pl 
http://samy.pl 
        Twitter: @SamyKamkar 
 

mailto:samy@samy.pl
http://samy.pl


Who is samy? 

• "Narcissistic Vulnerability Pimp" 

 (aka Security Researcher for fun) 

• Creator of The MySpace Worm 

• Author of Evercookies 

• Co-Founder of Fonality, IP PBX company 

• Lady Gaga aficionado 

 

 

 



Cyber Warrior 

• Raided 

• Computer use lost (Hackers-style) 

• 700 hours of community service 

• Restitution 

• Probation 



Why the web? 

• It’s new, it’s cool, it’s exploitable! 

• Gopher isn’t used as much anymore 

• The web is a code distribution channel 

• Browsers can communicate in ways 
they don’t know 

 

• And much more! 

 

 



My Homepage 

• It’s new, it’s cool, it’s exploitable! 

• Gopher isn’t used as much anymore 

• The web is a code distribution channel 

• Browsers can communicate in ways 
they don’t know 

 

• And much more! 

 

 



Attack Indirectly 
• Certified Information Security Specialist 

Professional 

• Chief Executive Officer of SecTheory 

• Co-Author of « XSS Exploits: Cross Site Scripting 
Attacks and Defense » 

• Author of « Detecting Malace » 

• Co-developer of Clickjacking with Jeremiah 
Grossman 

• Runs ha.ckers.org and sla.ckers.org 

• Certified ASS (Application Security Specialist) 

 



Attack Indirectly 
• Robert « Rsnake » Hansen 

• How do we attack someone who 
secures himself well? 

• Don’t. 



Attack Indirectly 
• XSS? Probably won’t fall for it. 

• CSRF? Same. 

 



PHP: Overview 

• PHP: extremely common web language 

• PHP sessions: extremely common default 
session management 

• PHP sessions: used by default in most PHP 
frameworks (e.g., CakePHP) 

• PHP sessions: either passed in URL or… 

 





PHP Sessions: Overview 

• session_start() – initialize PHP session 



PHP Sessions: Entropy 
• session_start()’s pseudo-random data: 

• IP address:                      32 bits 

• Epoch:      32 bits 

• Microseconds:      32 bits 

• Random lcg_value() (PRNG):  64 bits 

• TOTAL:      160 bits 

• SHA1’d:      160 bits 

• 160 bits = a lot =  
1,461,501,637,330,902,918,203,684,832,716,
283,019,655,932,542,976 



How big is a bit? Some tricks 
 

 

 

• For every 10 bits,  add  ~3  zeros 

• 10 bits = 1,024 (thousand) 

• 20 bits = 1,048,576 (mil) 

• 30 bits = 1,073,741,824 

• 25 bits = ~32,000,000 

0bits 1bit 2bits 3bits 4bits 5bits 6bits 7bits 8bits 9bits 

1 2 4 8 16 32 64 128 256 512 



• 160 bits = 2 ^ 160 = ~10 ^ 48  

• 160 bits =  
1,461,501,637,330,902,918,2
03,684,832,716,283,019,655
,932,542,976 

• At 100 trillion values per 
second, 160 bits would 
take… 

• (2 ^ 160) / (10 ^ 14) / (3600 
* 24 * 365 * 500000000) = 
926,878,258,073,885,666 = 

900 quadrillion eons 

• 1 eon = 500 million years 

 

It’s 

Just 

Math! 



PHP Sessions: Entropy 
• session_start()’s pseudo-random data: 

• IP address:                      32 bits 

• Epoch:      32 bits 

• Microseconds:      32 bits 

• Random lcg_value() (PRNG):  64 bits 

• TOTAL:      160 bits 

• SHA1’d:      160 bits 

• 160 bits = a lot =  
1,461,501,637,330,902,918,203,684,832,716,
283,019,655,932,542,976 



PHP Sessions: Entropy Redux 

• Not so pseudo-random data: 

• IP address: 32 bits 

• Epoch: 32 bits 

• Microseconds: 32 bits  

– only 0 – 999,999 … 20 bits = 1,048,576 

– < 20 bits!        (REDUCED) -12 bits 

• Random lcg_value() (PRNG): 64 bits 

• TOTAL: 148 bits  (reduced by 12 bits) 

• SHA1’d: 160 bits 



An Example: Facebook 
 
 



PHP Sessions: Entropy Redux 

• Not so pseudo-random data: 

• IP address: 32 bits 

• Epoch: 32 bits          (ACQUIRED) -32 bits 

• Microseconds: 32 bits  

– only 0 – 999,999 … 20 bits = 1,048,576 

– < 20 bits!        (REDUCED) -12 bits 

• Random lcg_value() (PRNG): 64 bits 

• TOTAL: 116 bits  (reduced by 44 bits) 

• SHA1’d: 160 bits 



An Example: Facebook 
 
 



PHP Sessions: Entropy Redux 

• Not so pseudo-random data: 

• IP address: 32 bits  (ACQUIRED) -32 bits 

• Epoch: 32 bits          (ACQUIRED) -32 bits 

• Microseconds: 32 bits  

– only 0 – 999,999 … 20 bits = 1,048,576 

– < 20 bits!        (REDUCED) -12 bits 

• Random lcg_value() (PRNG): 64 bits 

• TOTAL: 84 bits  (reduced by 76 bits) 

• SHA1’d: 160 bits 



PHP LCG (PRNG): Randomness 
 
 
• php_combined_lcg() / PHP func lcg_value()  



PHP LCG (PRNG): Randomness 
 
 

• S1 WAS 32 bits, NOW 20 bits 

• SEED (s1+s2): 64 bits – 12 bits = 52 bits 



PHP LCG (PRNG): Randomness 
 
 • LCG(s2) = (long) getpid();  

• S2 = 32 bits 

• Linux only uses 15 bits for PIDs 

• S2 = 32 bits – 17 bits = 15 bits 

• SEED (s1+s2) = 15 bits + 20 bits = 35 bits   

• Apache server info page / PHP info page 

• PHP function: getmypid() 

• Linux command: ps 

• SEED (s1+s2) = 0 bits + 20 bits = 20 bits  



PHP Sessions: Entropy Redux 

• Not so pseudo-random data: 

• IP address: 32 bits  (ACQUIRED) -32 bits 

• Epoch: 32 bits          (ACQUIRED) -32 bits 

• Microseconds: 32 bits  

– only 0 – 999,999 … 20 bits = 1,048,576 

– < 20 bits!        (REDUCED) -12 bits 

• Random lcg_value  (REDUCED) -44 bits 

• TOTAL: 40 bits  (reduced by 120 bits) 

• SHA1’d: 160 bits 





PHP Sessions: Entropy Redux 

• Microseconds: 32 bits down to 20 bits  

• Random lcg_value       down to 20 bits 

• 40 bits? No! We can calc lcg_value() first! 

• With a time-memory trade-off (4 MB), we 
can learn the lcg_value original seed in a 
few seconds, REDUCING to 20 bits! 

• 40 bits – 20 bits = 20 bits 

 
  20 bits = 1,048,576 cookies  



GREAT SUCCESS! 

• 500,000 requests on average! 

• Can be completed in hours 



You down with entropy? 
Yeah you know me! 

• PHP 5.3.2: a bit more entropy 

• Create your own session values! 

• Attack is difficult to execute! 

• PS, Facebook is not vulnerable! 

• Please help my farmville 

* Thanks to Arshan Dabirsiaghi and Amit Klein for pointing me in the right 

direction 



GREAT SUCCESS! 

• Using old victim’s cookie, message 
our new victim with a malicious link!  



This is your network.     



            This is your network on drugs.     



A NAT 



Cross-Protocol Scripting (XPS) 

• HTTP servers can run on any port 

• A hidden form can auto-submit data 
to any port via JS form.submit() 

• HTTP is a newline-based protocol 

• So are other protocols….hmmmm 



Cross-Protocol Scripting: 
Examples in the real world 

• Let’s write an IRC client  in HTTP! 

• This uses the CLIENT’s computer to 
connect, thus using their IP address! 



       IRC Example 



HTTP POST w/IRC content 



NAT Pinning: cont. 



NAT Pinning:  
XPS times OVER 9,000 

• Sweet! So what is NAT Pinning? 

• NAT Pinning confuses not only the 
browser, but also the ROUTER on the 
application layer 

• E.g., when communicating with port 
6667, browser thinks HTTP, router 
thinks IRC 

• We can exploit this fact and use 
router conveniences to attack client 



NAT Pinning: IRC DCC  

• linux/net/netfilter/nf_conntrack_irc.c 

• DCC chats/file sends occur on a 
separate port than chat 

• Client sends: 

PRIVMSG samy :DCC CHAT samy IP 
port 

• Router sees IP (determined from 
HTTP_REMOTE_ADDR) and port, 
then FORWARDS port to client! 

• ANY PORT! 



NAT Pinning: cont. 



NAT Pinning: blocked ports 

• If browser doesn’t allow outbound 
connections on specific ports? 

 

 

• TCP / UDP ports = 16 bits = 65536 

• So overflow the port! 65536 + 6667  



NAT Pinning: blocked ports 

• 6667 + 65536 = 72203 

• 6667  = 00001101000001011 

• 72203 = 10001101000001011 
 

• Some browsers check: 

if port == 6667 … but 

  72203 != 6667 

• Correct check:  port % 2^16 

* Webkit integer overflow discovered by Goatse Security 

 

 



 



NAT Pinning: prevention 

• Strict firewall – don’t allow unknown 
outbound connections 

• Client side – run up to date browser 

• Client side – use NoScript if using 
Firefox 

• Client side – run local firewall or tool 
like LittleSnitch to know if an 
application is accessing unknown 
ports 



Penetration 2.0 



TRIPLE  X 



TRIPLE  X 

SS 



Geolocation via XXXSS 

 
 



Geolocation via XXXSS 

• Anna visits malicious site 

 
 



Geolocation via XXXSS 

• Anna visits malicious site 

• XXXSS scans her local network for 
the type of router she uses 

 
 

 

 



Geolocation via XXXSS 

• Anna visits malicious site 

• XXXSS scans her local network for 
the type of router she uses 

 
 

 

 



Geolocation via XXXSS 

• Anna visits malicious site 

• XXXSS scans her local network for   
the type of router she uses 

• XSS router to load remote malicious 
JS 

 

 
 

 

 



Geolocation via XXXSS 

• Remote JS uses AJAX to acquire MAC 

 

  



Why MAC Address? 

• Just Bing it! 

 

  



Why MAC Address? 

• Just Bing it! 

• Type www.bing.com in your URL bar 

 

  

http://www.bing.com


Why MAC Address? 

• Just Bing it! 

• Type www.bing.com in your URL bar 

• Type in “Google” in the search box 

  

http://www.bing.com


Why MAC Address? 

• Just Bing it! 

• Type www.bing.com in your URL bar 

• Type in “Google” in the search box 

• Hit enter! 

 

  

http://www.bing.com


Why MAC Address? 

 



Geolocation via XXXSS 

• Upon MAC acquisition, ask the Google 

• See FF source for Location Services 



Geolocation via XXXSS 

 
latitude:    36.0920029 

longitude: -123.3461946 



Geolocation via XXXSS 

 



Geolocation via XXXSS 

 



NAT Pinning: prevention 

• Strict firewall – don’t allow unknown 
outbound connections 

• Client side – run up to date browser 

• Client side – use NoScript if using 
Firefox 

• Client side – run local firewall or tool 
like LittleSnitch to know if an 
application is accessing unknown ports 

PRIVACY IS 

DEAD 



Q&A 

A gentleman never asks. 

A lady never tells. 



Fin 
phpwn:                         samy.pl/phpwn 

NAT Pinning:          samy.pl/natpin 

Geolocation via XSS:   samy.pl/mapxss 
 

 

 

 

 

Samy Kamkar 

www.samy.pl 

samy@samy.pl 

       twitter.com/SamyKamkar  

* No IRC channels were trolled in the making of this presentation. 


