
Juraj Malcho (malcho@eset.sk)
Alexandr Matrosov
Eugene Rodionov
David Harley
Liam (Symantec)

2010: The Year of the Exploit

Microsoft Windows Server Releases Roadmap

The picture courtesy of Microsoft

Microsoft Significant vulnerabilities

MS03-026 Buffer Overrun In RPC Interface (Blaster)

MS04-011 LSASS Vulnerability (Rbot

MS06-014 MDAC exploit (the base of Exploit Packs)

MS07-017 Windows Animated Cursor Remote Code
Execution Vulnerability

MS08-067 Vulnerability in Server Service (Conficker)

MS10-046 Vulnerability in Windows Shell (Stuxnet)

Microsoft Security Advisory (2269637) – Insecure
Library Loading Could Allow Remote Code Execution

MS10-046 LNK exploit

Windows Shell vulnerability

Discovered in the wild as a 0-day

Out-of-band patch released on August 2nd 2010

Affects all Windows versions
Spreading (not only) via removable devices regardless of
security settings

MITRE code CVE-2010-2568

Win32/Stuxnet

Win32/Stuxnet

VirusBlokAda identified Stuxnet and the LNK exploit
on June 17th (Trojan-Spy.04850)
Microsoft and others only took a notice a month later

Realtek Semiconductors notified on June 24th

regarding the certificate problem
Allegedly, the notification was ignored

July 13th – The Moment of Truth
Win32/Rootkit.TmpHider
July 6th 2010: Win32/Rootkit.Agent.NTK

Gradual unfurling of the truth about Stuxnet
At first seemed to be spyware
Only in September was it found to be a tool of
destruction

Win32/Stuxnet

Targeted attack
Not only an eye-opener for the general public, but even
for many in the IT security industry

Uncompromisingly professional
Created by a team of people

0-day vulnerability portfolio
4 0-day vulnerabilities: MS10-046, MS10-061, MS10-073,
MS10-0XX + MS08-067

Signed!
Compromised Realtek & JMicron certificates

Weeks of exhaustive analysis
The effect on Siemens Simatic SCADA SW
Speculation about other possible targets

Win32/Stuxnet invisible

First variants January/March/June 2009
Vulnerability arsenal was limited by then:
MS08-067
MS10-061
MS08-025 (win32k.sys!NtUserMessageCall)
autorun.inf

Significant upgrade in January 2010
Another driver added
Signed by Realtek Technologies certificate
New 0-day vulnerabilities added:
MS10-046, MS10-061, MS10-073, MS10-0XX

Win32/Stuxnet signatures

Win32/Stuxnet vulnerabilities

Stuxnet propagation and
installation vectors in

MS Windows

removable devices

general attack vector

MS10-046

additional attack vectors

local network

MS10-061

MS08-067

Vista/Win7/Server 2008

privilege escalation

privilege escalation

Win2000/XP

MS10-0XX

MS10-073

propagation installation

Win32/Stuxnet exploit #0: MS08-067

\\remote\hello\.\you\..\world\

\\remote\hello\you\..\world\

\\remote\hello\world\

netapi32.dll!NetPathCanonicalize

Win32/Stuxnet exploit #0: MS08-067

\\remote\..\..\hello_world\

..\hello_world\

netapi32.dll!NetPathCanonicalize

Win32/Stuxnet exploit #0: MS08-067

c$ and admin$ shares scan

Win32/Stuxnet exploit #1: MS10-0XX

A vulnerability in Task Scheduler service
Scheduled tasks integrity checking problem

Used for privilege escalation
Windows Vista and above

Win32/Stuxnet exploit #2: MS10-073

A vulnerability in win32k.sys
Based on faulty processing of keyboard layout files

Used for privilege escalation
Windows 2000 and WindowsXP are affected

fanny.bmp
Win32/Agent.OSW (Win32/Dottun) connection
between win32k.sys and LNK exploit

Win32/Stuxnet exploit #3: MS10-061

A vulnerability in Printer Spooler
Shared printers problem

2009/04

Used to spread over the network
All Windows versions vulnerable

A problem in verifying the identity of the printing
client
Instead of being sent to a printer files are dropped to:
%SYSTEM32% (privileged operation):
Windows\System32\winsta.exe and
Windows\System32\wbem\mof\sysnullevnt.mof

Win32/Stuxnet exploit #4: MS10-046

LNK exploit CVE-2010-2568
A design error, no shell code or buffer overflow issue

Used to spread via removable media
All Windows versions vulnerable

The graphics are loaded from the file referenced in the
LNK file and not only that

Win32/Stuxnet exploit #4: MS10-046

4 ways of storing the path to the payload:
\\.\STORAGE#Volume#_??_USBSTOR#Disk&Ven_____USB&Prod_FLASH_DRI
VE&Rev_#12345000100000000173&0#{53f56307-b6bf-11d0-94f2-
00a0c91efb8b}#{53f5630d-b6bf-11d0-94f2-00a0c91efb8b}\~WTR4141.tmp

\\.\STORAGE#Volume#1&19f7e59c&0&_??_USBSTOR#Disk&Ven_____USB&Pr
od_FLASH_DRIVE&Rev_#12345000100000000173&0#{53f56307-b6bf-11d0-
94f2-00a0c91efb8b}#{53f5630d-b6bf-11d0-94f2-00a0c91efb8b}\~WTR4141.tmp

\\.\STORAGE#RemovableMedia#8&1c5235dc&0&RM#{53f5630d-b6bf-11d0-94f2-
00a0c91efb8b}\~WTR4141.tmp

\\.\STORAGE#RemovableMedia#7&1c5235dc&0&RM#{53f5630d-b6bf-11d0-94f2-
00a0c91efb8b}\~WTR4141.tmp

Win32/Stuxnet User mode functionality

Large DLL is the main body
Everything else (including kernel mode drivers) in the
resources

Code injection (existing processes)

1) Allocates a memory block

2) Patches Ntdll.dll system library

3) Calls LoadLibraryW API, exported
from kernel32.dll, with a constructed
library as a param:
KERNEL32.DLL.ASLR.XXXXXXXX or
SHELL32.DLL.ASLR.XXXXXXXX;
XXXXXXXX being a random hex number

4) Calls desired exported function

5) Calls FreeLibrary API function to free
loaded library

Code injection (new processes)

1) Creates a host process

2) Replaces the image with the code to load specified
module/export (as in previous scenario)

Host processes:
• lsass.exe (system process)
• avp.exe (Kaspersky)
• mcshield.exe (McAfee VirusScan)
• avguard.exe (AntiVir Personal Edition)
• bdagent.exe (BitDefender Switch Agent)
• UmxCfg.exe (eTrust Configuration Engine from CA)
• fsdfwd.exe (F-Secure Anti-Virus suite)
• rtvscan.exe (Symantec Real Time Virus Scan service)
• ccSvcHst.exe (Symantec Service Framework)
• ekrn.exe (ESET Antivirus Service Process)
• Tmproxy.exe (PC-cillin / TrendMicro)

Installation ~WTR4141. TMP

Hooks:
• kernel32.dll

• FindFirstFileW
• FindNextFileW
• FindFirstFileExW

•ntdll.dll
• NtQueryDirectoryFile
• ZwQueryDirectoryFile

To hide files:
• with ".LNK" extension sized 1471 bytes
• with ".TMP" extension of which the name consists of
12 characters in the format ~WTRabcd.TMP

Win32/Stuxnet the exports (1)

Export #2
Called in address space of the process with name
s7tgtopx.exe and CCProjectMgr.exe
Hooks monitor opening files with the extension .S7P &
.MCP
Siemens Simatic Step7 software

Export #5
Checks whether the kernel-mode driver MrxCls.sys is
properly installed in the system

Export #6
Return current version of Stuxnet installed

Win32/Stuxnet the exports (2)

Export #9, #31
Builds Stuxnet's dropper from the files located in the
system and runs it:
• %Dir%\XUTILS\listen\XR000000.MDX
• %Dir%\XUTILS\links\S7P00001.DBF
• %Dir%\XUTILS\listen\S7000001.MDX

Export #18
Completely removes the malware from the system and
perform full cleanup

Win32/Stuxnet the exports (3)

Export #16
Installs the malware's components:
• Drops and installs kernel-mode drivers: MrxNet.sys and
MrxCls.sys
• Drops the main dll in %SystemRoot%\inf\oem7A.PNF
• Drops Stuxnet's configuration data in
%SystemRoot%\inf\mdmcpq3.PNF
• Creates tracing file in %SystemRoot%\inf\oem6C.PNF
• Drops data file in %SystemRoot%\inf\mdmeric3.PNF
• Injects the main dll into services.exe process and
executes the function exported as ordinal 32
• Injects the main dll into the s7tgtopx.exe process if any
exists, and executes exported function 2 there

Win32/Stuxnet the exports (4)

Export #17
Replaces s7otbxdx.dll with a malicious DLL; original
library renamed to s7otbxdx.dll
Wrapper plus hooks 16 functions:
• s7_event
• s7ag_bub_cycl_read_create
• s7ag_bub_read_var
• s7ag_bub_write_var
• s7ag_link_in
• s7ag_read_szl
• s7ag_test
• s7blk_delete
• s7blk_findfirst
• s7blk_findnext
• s7blk_read
• s7blk_write
• s7db_close
• s7db_open
• s7ag_bub_read_var_seg
• s7ag_bub_write_var_seg

Win32/Stuxnet the exports (5)

Export #19
Prepares the files to propagate through USB flash drives:
Copy of Shortcut to.lnk
Copy of Copy of Shortcut to.lnk
Copy of Copy of Copy of Shortcut to.lnk
Copy of Copy of Copy of Copy of Shortcut to.lnk
~WTR4141.TMP
~WTR4132.TMP

Export #22
Network distribution (via exploits) + RPC-based
communication

Export #27
Implements RPC server to handle remote calls

Win32/Stuxnet the exports (6)

Export #28
Communication with C&C

Export #29
Data exchange with C&C send data/receive a binary to
execute

Win32/Stuxnet the exports (7)

Export #32
Starts the RPC server (must be called from services.exe)
Monitors WM_DEVICE_CHANGE
Can drop or remove files from removables

Win32/Stuxnet RPC features

RpcProc1 – Returns the version of the worm
RpcProc2 – Loads a module passed as a parameter into a
new process and executes specified exported function
RpcProc3 – Loads a module passed as a parameter into
the address of the process executing this function and calls
its exported function number 1
RpcProc4 – Loads a module passed as a parameter into a
new process and executes it
RpcProc5 – Builds the worm dropper
RpcProc6 – Runs the specified application
RpcProc7 – Reads data from the specified file
RpcProc8 – Writes data into the specified file
RpcProc9 – Deletes the specified file
RpcProc10 – Works with the files of which the names are
intercepted by hooks set up in function number 2 and writes
information in tracing file

Win32/Stuxnet Resources

Resource ID Description

201
Kernel-mode driver (MrxCls.sys) responsible for injecting code into certain

processes

202 A proxy dynamic link library

203 A .cab file with dynamic link library inside

205 Configuration data for MrxCls.sys

208 A dynamic link library – fake s7otbldx.dll (Siemens SCADA module)

209 Encrypted data file drop to %WINDIR%\help\winmic.fts

210 Template PE-file, used to construct dropper (~WTR4132.TMP)

221 Module used for distribution of the worm by exploiting RPC vulnerability

222
Module used for distribution of the worm by exploiting MS10-061

vulnerability

240 .LNK file template, used to create .LNK files exploiting vulnerability

241
~WTR4141.TMP – dynamic link library, used to load dropper

(~WTR4132.TMP) while infecting system

242
Kernel-mode driver (MrxNet.sys) responsible for concealing files exploiting

LNK vulnerability and infecting system

250
Module used to escalate privileges by exploiting 0-day vulnerability in

Win32k.sys

Win32/Stuxnet Kernel mode functionality

Digitally signed drivers
Rootkit functionality

MRXCLS.SYS
Injector/Stealthy export
calls

MRXNET.SYS
Files hiding

Win32/Stuxnet bot config data

%WINDIR%\inf\mdmcpq3.pnf
Encrypted, 1860 bytes
• URLs of C&C servers
• Activation time the time and date after which the
worm is active
• Deactivation time the time after which the worm
becomes inactive and deletes itself
• Version of the malware
• The minimum quantity of files that the removable drive
should contain to drop malicious .LNK files successfully
• Other information about its propagation and
functioning

C&C
• www.mypremierfutbol.com
• www.todaysfutbol.com

http://www.mypremierfutbol.com/index.php?data=data-to-send

Win32/Stuxnet PLCs

Programmable Logic Controller

Monitors Input and Output lines
Sensors on input
Switches/equipment on output
Many vendors

Stuxnet seeks specific models
s7-300 & s7-400

Win32/Stuxnet HW Configuration

PLC config stored in System Data Blocks
Stuxnet parses these blocks

Looks for magic bytes 2C CB 00 01 at offset 50h
Signifies a Profibus network card attached CP 342-5

Looks for 7050h and 9500h
Must have more than 33 of these values

Injects different code based on number of occurences

Win32/Stuxnet Step7, STL, MC7

Simatic or Step7 software
Used to write code in STL or other languages

STL is compiled to MC7 byte code
MC7 byte code is transferred to the PLC

MC7 code is transferred to the PLC
Control PC can now be disconnected

Win32/Stuxnet Man in the Middle

Step7 uses a library to
access the PLC
S7otbxdx.dll

Stuxnet replaces the
DLL with its own
version
Replaces s7otbxdx.dll
with a malicious DLL;
original library renamed
to s7otbxsx.dll

Stuxnet intercepts
reads and writes to
the PLC and changes
the code at this point

Win32/Stuxnet MC7 Byte Code

Stuxnet contains at least 70 binary blobs of data
Encoded and stored in fake DLL

This is the MC7 code to be injected to the PLCs
Can only be understood after being converted to STL

Even though the code is readable, still unsure what it
means
Starts to make sense only on the targeted system

Win32/Stuxnet OB1 & OB35

OB1 = main() on PLCs
Stuxnet inserts its own code at the beginning of OB1 so
it runs first

OB35 is a 100 ms interrupt routine
Used to monitor inputs that require fast action
Stuxnet infects OB35 too

Stuxnet will return clean version of these functions
when they are read from the PLC

Win32/Stuxnet the real payload

Stuxnet contains hundreds lines of code

UC FC 1865
POP
L DW#16#DEADF007
==D
BEC
L DW#16#0
L DW#16#0

Tampers with Frequency Converter Drivers
Sets them on low vs high (2~1410Hz) every 13/27 days

Win32/Stuxnet facts vs speculation & myth

Frequency converter drives
Fararo Paya in Teheran, Iran
Vacon NX Finland

Nuclear Regulatory Commission," because one of their

Targeted Iran?
Natanz: number of operational centrifuges dropped

Teamwork
Requires extensive knowledge and manpower, too

Government or terrorists?

Why leaving traces then? #DEADF007, 19790509,
Myrtus

MS10-046 related malware and its evolution

8(+)

CVE-2010-2744/MS10-073 (win32k.sys) – since 2009/11!!!

... needs to be considered and protected

Education is a necessary part of defense

Gathering data
Not so difficult online

Mining and exploring it
To find the right target

Marketing folks know this
Cyber criminals are no different

Careful what you say

Nothing comes for free
Mistrust information you didn't ask for or people you

Juraj Malcho (malcho@eset.sk)

Alexandr Matrosov

Eugene Rodionov

David Harley

Thanks to Liam & all Stuxnet Reverse Engineers

Questions?

