
  
Juraj Bednár29. 11. 2010

Managing servers with DSSH



  

DIGMIA

● System administration and consulting company

● Most of the TOP 20 web sites in Slovakia are our customers

● Supporters of open-source

Me

● Co-founder of Progressbar.sk hackerspace

● Member of Society for Open Information Technologies 

(soit.sk)

Introduction



  

● At least 5 system administrators or

● At least 30 servers in heterogenous environment

Who is this presentation for?



  

Use case



  



  

Wrong solutions

● Use ssh agent forwarding
– Known to be insecure if you don't trust the 

server (which you should not – it's customer's, 
their security policy applies)

● Create VPN to office
– Single point of failure
– Difficult to manage if there are different 

customers with same network range 
(192.168.x.x)?



  

● Cut & paste passwords

● Clipboard not safe enough

● You don't need to display passwords, just use them at just 

the right place (don't paste to chat...)

Wrong solutions



  

● pfexec, sudo, ...

● Low auditability

● sudo -s

● copy file to server and then execute

● Management hell

● Can not create lots of unix accounts and manage them

● LDAP not possible (different customers, different security 

policies)

Not applicable for us



  

● Custom scriptable SSH client

● Written in Java, using modified Trilead SSH library

● Console initialization components written in JNI

● Needs terminal emulator (such as xterm or Terminal.app)

● Scriptable in BeanShell

● Used Groovy, but it was too slow (interactive start)

Enter DSSH



  

● SSH in SSH tunneling

● Hostnames can be interpreted by script to login you to target 

network

● Possibility to change hostnames

● Possibility to login as root by using “su” or “ena”

● Limited scp support (sftp coming soon)

● Not possible to scp using “su” or “ena” because of server lim.

Features



  

● Dynamic path selection (script can ping several entry point 

hosts)

● Logging support

● Credentials storage very lightweight

● API does not support key retrieval (you can only use keys)

● Supports password retrieval

● Can be changed for any password storage solution easily

Additional features



  

Architecture



  

● We don't want our admins to remember weird port numbers

if ((host.equals("weirdhost.customer1")) && (port == 22))

                        port = 31337;

● Or IP addresses

                if (host.equals("weirdhost.customer2"))

host = "192.146.122.211";

Examples



  

● Automatically use backup connection

   if (host.equals("weirdhost3.customer")) {

     InetAddress address = InetAddress.getByName(host);

       if (!address.isReachable(1500)) {

         if (verbose)                                        

System.err.println("Unable to connect to weirdhost3.customer, 

connecting to weirdhost3-1.customer instead");

                                host = "weirdhost3-1.customer";

         }}

                     

Examples



  

● Use jumpstation (SSH in SSH tunelling)

   if (host.equals("weirdhost5.customer")) {

  parent = getAuthenticatedSSHConnection(myuser, 

“gw.customer”, 22, parent, auth);

         }

● Additionaly you can create “virtual hostnames” by adding 

host = “192.168.2.3”;

                     

Examples



  

● Security policy denies direct root logins

● In getAuthenticatedSSHConnection()

    if (host.equals("weirdhost.customer4") && user.equals("root"))

                        user = "digmia";

● In getInteractiveSession()

if (host.equals("weirdhost.customer4") && user.equals("root")       

   return new InteractiveSuSession(conn.openSession(), host, 

username, pass);

Examples



  

● Collect configurations from Cisco routers

for i in `cat dsshhostlist-cisco`

        do

                echo "Downloading configuration from $i"

                echo term len 0 $'\n' sh run $'\n' exit | 

/usr/local/bin/dssh -k cisco/known_hosts ena@$i | sed -n 

'/^[!]/,/^end/p' > cisco/$i

        done 

Examples



  

Documentation and license

● Currently GPLv2
– We consider to switching to less strict license (BSD)

● Documentation with examples available online
● Download at http://opensource.digmia.com/

http://opensource.digmia.com/


  

Future

● Creating “DSSH server”
– Standalone mode still possible
– Lightweight client (possibly in Python)

● Faster start-up times
● Very little actual functionality

– Possible to quickly steal terminal 
emulation from Putty and allow “xterm”-
less Windows client

● SSL + certificates



  

Future
– Server allows additional features

● Client never sees credentials
● Server can check ACLs
● Revoke certificates (no need to change all 

passwords, although this is scriptable thanks 
to DSSH :)

– DSSH server side auditing
● DSSH server sees into connections (even 

forwarded ones)
● Logging of file transfers, port forwards, 

console, ...
● Server can be clustered (very little state information, this is 

really easy)



  

Future
● Admins never see credentials

– No password leaks nor key leaks
– SSL certificates can be revoked and exchanged easily

● Admins sometimes have to see credentials anyway (console 
root login to broken server)

– Portal to request password and provide explanation
– Automatically creates ticket to change password in 

trouble ticketing system
● SOCKS proxy -D (currently supports only -L a -R port 

forwarding)



  

Future
● Central server key authority

– known_hosts idea is a main failure
– Key never “just changes”, someone has to approve
– Configurable policy, that does not ask the 

administrator, but just drops the connection



  

New architecture



  

Questions?
● Working on it right now

– Q1-Q2 2011
– You can help and shape the future of DSSH!

● Questions?
– (and possibly some answers)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

