
The Cold Boot Attack

Nadia Heninger

November 20, 2009

Joint work with: J. Alex Halderman, Seth D. Schoen, William Clarkson,

William Paul, Joseph A. Calandrino, Ariel J. Feldman, Rick Astley, Jacob

Appelbaum, and Edward W. Felten

The Persistence of Memory

For a good time, run

sync

then run something like the following Python program until you
get bored:

a = ""
while 1: a += "ARGON"

Then yank the power on your computer, reboot, and

sudo strings /dev/mem | less

Do you find any ARGON?

(Extended instructions at citp.princeton.edu/memory/exp/)

The Persistence of Memory: Why?
DRAM is an array of tiny capacitors.

To write a bit, the capacitor is charged.

When power is on, the state is refreshed every 10 µs.

Without power, they discharge to a ground state.

!"#$%&'()*++$,-'&./+0

12'2)324"+)25,.+')&/+'2/'2/".$+5()6&'7.$')%"3%"+7

*/()%"+&4$25)42'2)&+)4&33&#$5')'.)%"#.8"%

9

1(/2,&#):*;)<.52'&5&'(

=

>%&'")?=@

=

1:*;)A"55

BA2-2#&'.%C

9

:"3%"+7

B:"24)2/4)%"6%&'"C

:"3%"+7)D/'"%825)E)FG),+

>72')&3)6")4./H')%"3%"+7IBut this process takes seconds to minutes.

DRAM Decay Rates

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

55

Seconds Without Power

%
 D

ec
ay

B Data
B Fit
D Data
D Fit
E Data
E Fit
F Data
F Fit

The Persistence of Memory

5s. 30s. 1m. 5m.

Slowing Decay by Cooling

-50℃ < 0.2% decay

!"#$%&''(#)

*+,-.&/01203%405)'6#$

7%89+:;%3#<=>%=?5#)%!"#$%&

!"#$%&'&(()*+$,%$-*)'#,'&

Even cooler

Liquid Nitrogen -196℃

< 0.1% decay after 1 hour

(not necessary in practice)

Easy targets: Unsanitized data

Plain text passwords from Loginwindow.app in OS X 10.4, 10.5.

Bug had been around for 4 years.

Slightly more difficult targets: Encryption keys

!"#$%&'($)*$&$%+",(-$.&/+"/0

!"#$%&'(

!"'"%)*+,'(
1"$/2"+(3+)"-

-$%&'(

!"'"%)*+,'(
4)-)5&,$/2"+(3+)"-

-$%&'(.

/"%)*+,'(
6-78*+29$:(*+$/2&3+)3(

Slightly more difficult targets: Encryption keys

Slightly more difficult targets: Encryption keys

!"#$$%&
"'(%$)*+,-+./0

!123$4)5,$&
"'(%$)*+,-+62(7 "84$$)9:-87$*

/,,5879"8$)542-(

Slightly more difficult targets: Encryption keys

!"##"$%&''()*%+),$(-."

+,)/-.'0%&11/#2'."$1

%% 34,%,$)-02'."$%.1%1'-"$5

34,%6+%2-"',)'1%'4,%*,0%.$%

7&8

9'4,%(''()*,-%#.54'%-,:""'%'"%

).-)/#;,$'%'4,%6+<%:/'%1.$),%7&8%

.1%;"=('.=,<%'4,%*,0%>.==%:,%="1'9

!"#$%&'

Security Assumptions

The encryption is strong

The OS protects the key in RAM

!"##"$%&''()*%+),$(-."

+,)/-.'0%&11/#2'."$1

%% 34,%,$)-02'."$%.1%1'-"$5

34,%6+%2-"',)'1%'4,%*,0%.$%

7&8

9'4,%(''()*,-%#.54'%-,:""'%'"%

).-)/#;,$'%'4,%6+<%:/'%1.$),%7&8%

.1%;"=('.=,<%'4,%*,0%>.==%:,%="1'9

!"#$%&'

... the attacker might reboot to
circumvent the OS, but since RAM
is volatile, the key will be lost...

... Right?

Capturing Residual Data

Residual data can be captured easily, with no special
equipment

Complication

Booting a full OS overwrites large areas of RAM.

Solution
Boot a small low-level program to dump contents of memory.

Implementations

PXE Dump (9 KB) EFI Dump (10 KB) USB Dump (22 KB)

Available at citp.princeton.edu/memory/code/

Delivering the Attack
!"#$%"&$'()*+"),**-./

Looking for cryptographic keys

“Playing hide and go seek with stored keys”
Shamir and van Someren

The reality of the entropy approach

Finding Keys: Use the structure of the key data.

AES implementations typically precompute a sequence of round
keys from the single 128 or 256-bit key.

Round Key 1

Round Key 2

Core

...

Generation of the 128-bit AES key schedule.

Identifying AES keys in memory

Every encryption program we looked at computed and stored the
key schedules in exactly the same way.

Identifying AES keys in memory

To identify an AES key schedule in memory, scan for a block of
memory that has the properties of a key schedule.

Identifying AES keys in memory

To identify an AES key schedule in memory, scan for a block of
memory that has the properties of a key schedule.

Identifying AES keys in memory

To identify an AES key schedule in memory, scan for a block of
memory that has the properties of a key schedule.

Identifying AES keys in memory

To identify an AES key schedule in memory, scan for a block of
memory that has the properties of a key schedule.

How to identify RSA keys in memory?

Try multiplying blocks of memory together?

Try decrypting with every block of memory?

PKCS #1: RSA Cryptography Standard

RSAPublicKey ::= SEQUENCE {
modulus INTEGER, -- n
publicExponent INTEGER -- e

}

RSAPrivateKey ::= SEQUENCE {
version Version,
modulus INTEGER, -- n
publicExponent INTEGER, -- e
privateExponent INTEGER, -- d
prime1 INTEGER, -- p
prime2 INTEGER, -- q
exponent1 INTEGER, -- d mod (p-1)
exponent2 INTEGER, -- d mod (q-1)
coefficient INTEGER, -- (inverse of q) mod p
otherPrimeInfos OtherPrimeInfos OPTIONAL

}

PKCS #1: BER-encoding

30
82 02 5d

02
01

00

02
81 81

00 99 63 66 d5 . . .

02
03

01 00 01

02
81 80

6e 77 ef 54 a7 . . .
. . .

SEQUENCE
length: 605 bytes

INTEGER
length: 1 byte

(version)

INTEGER
length: 129 bytes

(n)

INTEGER
length: 3 bytes

(e)

INTEGER
length: 128 bytes

(d)
. . .

What if the recovered memory contains bit errors?

Correcting Errors in Cryptographic Keys: AES

Use the structure of redundant key data to correct errors.

Round Key 1

Round Key 2

Core

Can retrieve an AES key from 30% of a key schedule in seconds.

Correcting Errors in Cryptographic Keys: RSA

Use the structure of redundant key data to correct errors.

pq = N

ed = 1 (mod (p − 1)(q − 1))

edp = 1 (mod p − 1)

edq = 1 (mod q − 1)

Can retrieve an RSA key from 27% of key data in seconds.

Attacking disk encryption systems

1. Cut the power to the computer.

2. Reboot into a small memory extracting program.

3. Dump the data from RAM to a device of your choosing.

4. Find keys, fix any errors, decrypt hard drive.

Works against:

and others...
Microsoft BitLocker Apple Filevault TrueCrypt Loop-AES dm-crypt

”BitLocker, meet BitUnLocker.”
!"#$%&'()*+,-))$,"#$!".&'()*/

0)1&23$*4$#&2,&5,56..7,46$&14$)8,4$$4'(9,

:&22)'$,;<",8*#=)+,*)>&&$+,428,>*&?3),5#.)3Demonstration of fully automated attack:
Connect USB drive, reboot, and browse files

Countermeasures

No Magic Bullet

Possible Mitigations

I Encrypt key in memory when screen-locked.

I Avoid precomputation.

I Fully-encrypted memory

I Trusted Platform Module (TPM)

Encrypt Memory During Sleep

When entering screen-lock/hibernate/sleep:

I Encrypt RAM with user’s password

When awakened:

I Require user’s password to decrypt RAM

Minor behavioral changes

!"#$%&'()*+,$%(-.$/"0(12**&

34*"(*"'*$/"0(5#$**"62,#784/9*$":'*852**&;

! !"#$%&'(<=)(>/'4(.5*$?5(&:55>,$@

34*"(:>:7*"*@;

! <*A./$*(.5*$?5(&:55>,$@(',(@*#$%&'(<=)

)/",$(9*4:B/,$:2(#4:"0*5

CDDDEF

Zzzz...

Avoid Precomputation

This makes recovery harder, but:

I Hurts Performance
Having key schedule speeds computation

I Attacker can reduce the incidence of errors

I Alternative recovery schemes may perform well without this
data

Encrypted Memory

Memory encrypted with key

I Randomly chosen at boot

On cache read/write

I Data encrypted/decrypted when written/read

CPU reset clears key

!"#$%&'()*+,$%(-.$/"0(12**&

34*"(*"'*$/"0(5#$**"62,#784/9*$":'*852**&;

! !"#$%&'(<=)(>/'4(.5*$?5(&:55>,$@

34*"(:>:7*"*@;

! <*A./$*(.5*$?5(&:55>,$@(',(@*#$%&'(<=)

)/",$(9*4:B/,$:2(#4:"0*5

CDDDEF

TPM?

Current TPMs may help attacker

Windows BitLocker in Basic Mode

I On boot, OS loads key from TPM into RAM
(No password)

I Vulnerable to cold-boot attack
(Even if completely off)

Future TPMs may help

I Need bulk encryption

!"#$

%&''()*+!"#,+-./+0(12+.**.34('

56)789,+:6*;834('+6)+:.,63+#87(

! <)+=88*>+<?+18.7,+4(/+@'8-+!"#+6)*8+AB#

CD8+".,,98'7E

! F&1)('.=1(+*8+3817G=88*+.**.34

CHI()+6@+38-21(*(1/+8@@E

J&*&'(+!"#,+-./+0(12

! D((7+=&14+()3'/2*68)

Since the original paper...

... a lot of interesting follow-up work.

I Reviving an entire computer, VPN sessions and all.
“Bootjacker: compromising computers using forced restarts.”

I Improvements in key error-correction.

I Theoretical cryptographic work for “leakage-resilient”
cryptosystems.
“Cryptography without (hardly any) secrets”

For video, paper, and source code, visit:

citp.princeton.edu/memory

