Race to bare metal:

UEFI and hypervisors

L=

Agenda

Race to bare metal
Overview UEFI
UEFI in practice

Advantages of UEFI for anti/malware
hypervisors

Some practical considerations

1. Race to bare metal

Importance of early loading

* Natural protection from hypervisor
malware is installing another (security)

hypervisor first
* After one of them is active, “"game is over’
for the other one

* That means, both should strive to get
loaded as soon as possible

J

Importance of loading mechanism

* Weak point in preventing detection
* Weak point in security
* Early loading greatly increases complexity

2. Overview of UEFI

[Unified] Extensible Firmware
Interface (EFI / UEFI)

Pre-boot firmware interface (sort of BIOS
replacement)

Architecture-independent (portable: x86,
x86-64, [tanium, ARM)

C interface

Big part of implementation available as
open-source

Why replace BIOS?

Outdated 16-bit real mode assembly
interface

Lack of functionality
Lack of extensibility

Short supply of real mode assembly
programmers

History of UEFI

mid 90s - First steps towards EF]I
2000 - ltanium

2003 - x86-32

2005 - UEFI Forum

20006 - Intel-based Macs

2008 - x86-64

2008 - Vista SP1

UEFI Forum

Unified EFI

Intel, AMD, ARM, Dell, HP, Apple, IBM,
Lenovo, Phoenix, AMI, Insyde, Microsoft

UEFI Specification, Platform Initialization
Specification
See: http://www.uefi.org

http://www.uefi.org/
http://www.uefi.org/

Design

* Architecture-independent
* Modular
* Extensible

Features

Console I/O
Graphics

Unicode

Remote debugging
Bytecode

Networking (IPv4,
IPv6, IPsec, TCP,
UDP, FTP, PXE...)

ACPI

PCI bus support
SCSI stack

USB stack

User management
Filesystem access

Secure boot, code
validation

Implementation

Intel Tiano / The Framework
TianoCore (see http://www.tianocore.org)

InsydeH20, InsydeDIY

Phoenix SecureCore, TrustedCore,
AwardCore Tiano

AMI Aptio

http://www.tianocore.org/

UEFI-BIOS relationship

* UEFI only (Non-x86 machines, Macs)

* Optional UEFI on top of legacy BIOS
(non-Mac x86 PCs)

Current state of UEFI

Pushed forward by all major players
Standard on Itanium machines and Macs
Available on non-Mac PCs as option
Supported by 64-bit Windows Vista SP1
Supported by grub and elilo (EFI lilo)

3. UEFI in practice

UEFI| boot process

Security phase (SEC)

Pre-EFI Initialization (PEI)

Driver Execution Environment (DXE)
Boot device selection

OS Boot loader / EFI application
ExitBootServices()

Run Time

UEFI Pre-boot (DXE) Environment

* Uniprocessor

* Protected mode in 32/64-bit mode

* Paging disabled, or identity-mapped
* Only timer interrupt

UEFI boot manager

Controlled by NVRAM variables:
Boot###H, BootOrder, BootNext
Driver#t#ttit, DriverOrder

When UEFI Boot is enabled in BIOS, this
has priority over legacy BIOS boot from
MBR

UEFI Drivers

* Boot Drivers
unloaded on ExitBootServices() call
* Runtime Driver

persists until shutdown, preserved and
respected by OS

4. Advantages of UEFI for
anti/malware hypervisors

Loading

Earliest possible without reflashing BIOS
Secure boot (code validation)

Legal loading mechanism - no hacks
needed

Very easy to implement and install

Stealth

Untouched by OS
No “missing” resources

Novel technology omitted by current
security products

Loading mechanism easy to conceal

Code complexity reduction

* Common routines available
* Transitional modes virtualization

* Minimal code required for loading
mechanism

Pre-boot features

* Limited disk access
— Data gathering
— Validation of system boot

* Full network access
— Data sending
— Self-updating
— Remote activity logging

5. Some practical
considerations

Adding NVRAM variable

* SetVariable() EFI runtime service

* Undocumented APIs on Vista:

NtAddDriverEntry, NtSetDriverEntryOrder,
NtQuerySystemEnvironmentValue, etc...

e /dev/nvram on linux?

NtAddDriverEntry()

Prototype:
NTSTATUS NtAddDriverEntry(
EFlI_DRIVER_ENTRY *DriverEntry,
DWORD Id
);
Returns:

STATUS_SUCCESS (zero) when okay,
NTSTATUS error code upon failure

NtAddDriverEntry()

struct EFI_DRIVER_ENTRY {

DWORD Version; /I must be 1
DWORD Length; // must be at least 20
DWORD Id; /| at most OXFFFF

DWORD FriendlyNameOffset; // from beginning of struc
DWORD DriverFilePathOffset; // detto
BYTE data[1];

}
DriverFilePathOffset holds offset to FILE_PATH structure

NtAddDriverEntry()

struct FILE_PATH {
DWORD Version; // must be 1
DWORD Length;
DWORD Type;
BYTE path[1];

Type can be: 2=ARC Path, 3=NT path, 4=EFI path.

Real mode with VMX

Intel VMX doesn’t yet (?) support real
mode virtualization

64-bit Vista emulates real mode code - no
problem

UEFI still calls some real mode code, by
switching back to real mode - problem

On Intel CPUs, we still need real-mode
emulation :(

Enabling virtualization

* Virtualization may be disabled by BIOS

* Once disabled, it can’t be re-enabled
programatically

* However, on some BlIOSes we can
overwrite this BIOS setting programatically

Alternative: PCI Option ROM

UEFI (like legacy BIOS) automatically
loads Option ROM code for every PCI
device which has some

No traces of loading left (ho NVRAM
modification needed)

No extra file on disk

PCIl Option ROM is easier to virtualize
than file on disk

Links

* www.uefi.org
* www.tianocore.org

* Also see my articles “Introduction to UEFI”
and “UEFI programming: First steps” at
www.x86asm.net.

Q&A
Email: vidd512@gmail.com

http://www.uefi.org/
http://www.tianocore.org/
http://www.x86asm.net/

	Race to bare metal:
	Agenda
	1. Race to bare metal
	Importance of early loading
	Importance of loading mechanism
	2. Overview of UEFI
	[Unified] Extensible Firmware Interface (EFI / UEFI)
	Why replace BIOS?
	History of UEFI
	UEFI Forum
	Design
	Features
	Implementation
	UEFI-BIOS relationship
	Current state of UEFI
	3. UEFI in practice
	UEFI boot process
	UEFI Pre-boot (DXE) Environment
	UEFI boot manager
	UEFI Drivers
	4. Advantages of UEFI for anti/malware hypervisors
	Loading
	Stealth
	Code complexity reduction
	Pre-boot features
	5. Some practical considerations
	Adding NVRAM variable
	 NtAddDriverEntry()
	NtAddDriverEntry()
	Slajd 30
	Real mode with VMX
	Enabling virtualization
	Alternative: PCI Option ROM
	Links

