

Race to bare metal:

UEFI and hypervisors

Agenda

1. Race to bare metal
2. Overview UEFI
3. UEFI in practice
4. Advantages of UEFI for anti/malware

hypervisors
5. Some practical considerations

1. Race to bare metal

Importance of early loading

• Natural protection from hypervisor
malware is installing another (security)
hypervisor first

• After one of them is active, “game is over”
for the other one

• That means, both should strive to get
loaded as soon as possible

Importance of loading mechanism

• Weak point in preventing detection
• Weak point in security
• Early loading greatly increases complexity

2. Overview of UEFI

[Unified] Extensible Firmware
Interface (EFI / UEFI)

• Pre-boot firmware interface (sort of BIOS
replacement)

• Architecture-independent (portable: x86,
x86-64, Itanium, ARM)

• C interface
• Big part of implementation available as

open-source

Why replace BIOS?

• Outdated 16-bit real mode assembly
interface

• Lack of functionality
• Lack of extensibility
• Short supply of real mode assembly

programmers

History of UEFI

• mid 90s - First steps towards EFI
• 2000 - Itanium
• 2003 - x86-32
• 2005 - UEFI Forum
• 2006 - Intel-based Macs
• 2008 - x86-64
• 2008 - Vista SP1

UEFI Forum

• Unified EFI
• Intel, AMD, ARM, Dell, HP, Apple, IBM,

Lenovo, Phoenix, AMI, Insyde, Microsoft
• UEFI Specification, Platform Initialization

Specification
• See: http://www.uefi.org

http://www.uefi.org/
http://www.uefi.org/

Design

• Architecture-independent
• Modular
• Extensible

Features
• Console I/O
• Graphics
• Unicode
• Remote debugging
• Bytecode
• Networking (IPv4,

IPv6, IPsec, TCP,
UDP, FTP, PXE…)

• ACPI
• PCI bus support
• SCSI stack
• USB stack
• User management
• Filesystem access
• Secure boot, code

validation

Implementation

• Intel Tiano / The Framework
• TianoCore (see http://www.tianocore.org)
• InsydeH2O, InsydeDIY
• Phoenix SecureCore, TrustedCore,

AwardCore Tiano
• AMI Aptio

http://www.tianocore.org/

UEFI-BIOS relationship

• UEFI only (Non-x86 machines, Macs)
• Optional UEFI on top of legacy BIOS

(non-Mac x86 PCs)

Current state of UEFI

• Pushed forward by all major players
• Standard on Itanium machines and Macs
• Available on non-Mac PCs as option
• Supported by 64-bit Windows Vista SP1
• Supported by grub and elilo (EFI lilo)

3. UEFI in practice

UEFI boot process

• Security phase (SEC)
• Pre-EFI Initialization (PEI)
• Driver Execution Environment (DXE)
• Boot device selection
• OS Boot loader / EFI application
• ExitBootServices()
• Run Time

UEFI Pre-boot (DXE) Environment

• Uniprocessor
• Protected mode in 32/64-bit mode
• Paging disabled, or identity-mapped
• Only timer interrupt

UEFI boot manager

• Controlled by NVRAM variables:
• Boot####, BootOrder, BootNext
• Driver####, DriverOrder
• When UEFI Boot is enabled in BIOS, this

has priority over legacy BIOS boot from
MBR

UEFI Drivers

• Boot Drivers
unloaded on ExitBootServices() call

• Runtime Driver
persists until shutdown, preserved and
respected by OS

4. Advantages of UEFI for
anti/malware hypervisors

Loading

• Earliest possible without reflashing BIOS
• Secure boot (code validation)
• Legal loading mechanism - no hacks

needed
• Very easy to implement and install

Stealth

• Untouched by OS
• No “missing” resources
• Novel technology omitted by current

security products
• Loading mechanism easy to conceal

Code complexity reduction

• Common routines available
• Transitional modes virtualization
• Minimal code required for loading

mechanism

Pre-boot features

• Limited disk access
– Data gathering
– Validation of system boot

• Full network access
– Data sending
– Self-updating
– Remote activity logging

5. Some practical
considerations

Adding NVRAM variable

• SetVariable() EFI runtime service
• Undocumented APIs on Vista:

NtAddDriverEntry, NtSetDriverEntryOrder,
NtQuerySystemEnvironmentValue, etc…

• /dev/nvram on linux?

 NtAddDriverEntry()

Prototype:
NTSTATUS NtAddDriverEntry(

EFI_DRIVER_ENTRY *DriverEntry,
DWORD Id

);

Returns:
STATUS_SUCCESS (zero) when okay,
NTSTATUS error code upon failure

NtAddDriverEntry()
struct EFI_DRIVER_ENTRY {

DWORD Version; // must be 1
DWORD Length; // must be at least 20
DWORD Id; // at most 0xFFFF
DWORD FriendlyNameOffset; // from beginning of struc
DWORD DriverFilePathOffset; // detto
BYTE data[1];

}
DriverFilePathOffset holds offset to FILE_PATH structure

NtAddDriverEntry()
struct FILE_PATH {

DWORD Version; // must be 1
DWORD Length;

 DWORD Type;
BYTE path[1];

}

Type can be: 2=ARC Path, 3=NT path, 4=EFI path.

Real mode with VMX

• Intel VMX doesn’t yet (?) support real
mode virtualization

• 64-bit Vista emulates real mode code - no
problem

• UEFI still calls some real mode code, by
switching back to real mode - problem

• On Intel CPUs, we still need real-mode
emulation :(

Enabling virtualization

• Virtualization may be disabled by BIOS
• Once disabled, it can’t be re-enabled

programatically
• However, on some BIOSes we can

overwrite this BIOS setting programatically

Alternative: PCI Option ROM

• UEFI (like legacy BIOS) automatically
loads Option ROM code for every PCI
device which has some

• No traces of loading left (no NVRAM
modification needed)

• No extra file on disk
• PCI Option ROM is easier to virtualize

than file on disk

Links

• www.uefi.org
• www.tianocore.org
• Also see my articles “Introduction to UEFI”

and “UEFI programming: First steps” at
www.x86asm.net.

Q&A
Email: vid512@gmail.com

http://www.uefi.org/
http://www.tianocore.org/
http://www.x86asm.net/

	Race to bare metal:
	Agenda
	1. Race to bare metal
	Importance of early loading
	Importance of loading mechanism
	2. Overview of UEFI
	[Unified] Extensible Firmware Interface (EFI / UEFI)
	Why replace BIOS?
	History of UEFI
	UEFI Forum
	Design
	Features
	Implementation
	UEFI-BIOS relationship
	Current state of UEFI
	3. UEFI in practice
	UEFI boot process
	UEFI Pre-boot (DXE) Environment
	UEFI boot manager
	UEFI Drivers
	4. Advantages of UEFI for anti/malware hypervisors
	Loading
	Stealth
	Code complexity reduction
	Pre-boot features
	5. Some practical considerations
	Adding NVRAM variable
	 NtAddDriverEntry()
	NtAddDriverEntry()
	Slajd 30
	Real mode with VMX
	Enabling virtualization
	Alternative: PCI Option ROM
	Links

