
 Copyright 2007 Daniel B. Cid

Log Analysis using OSSEC

Daniel B. Cid
dcid@ossec.net

 Copyright 2007 Daniel B. Cid

Agenda

● OSSEC Overview
● Installation demo
● Log decoding and analysis with OSSEC
● Writing decoders
● Writing rules
● Examples of rules and alerts in the real world

 Copyright 2007 Daniel B. Cid

What is OSSEC?

● Open Source Host-based IDS (HIDS)
● http://www.ossec.net
● Main tasks:

➔ Log analysis
➔ File Integrity checking (Unix and Windows)
➔ Registry Integrity checking (Windows)
➔ Host-based anomaly detection (for Unix – rootkit detection)
➔ Active response

OSSEC is an Open Source Host-based Intrusion Detection System. It
performs log analysis, integrity checking, Windows registry
monitoring, Unix-based rootkit detection, real-time alerting and active
response.

 Copyright 2007 Daniel B. Cid

Why OSSEC?
● Solves a real problem and does it well (log analysis)
● Free (as in cookies and speech)
● Easy to install
● Easy to customize (rules and config in xml format)
● Scalable (client/server architecture)
● Multi-platform (Windows, Solaris, Linux, *BSD, etc)
● Secure by default
● Comes with hundreds of decoders/rules out of the box:

➔ Unix Pam, sshd (OpenSSH), Solaris telnetd, Samba, Su, Sudo, Proftpd,
Pure-ftpd, vsftpd, Microsoft FTP server, Solaris ftpd, Imapd, Postfix,
Sendmail, vpopmail, Microsoft Exchange, Apache, IIS5, IIS6, Horde IMP,
Iptables, IPF. PF, Netscreen, Cisco PIX/ASA/FWSM, Snort, Cisco IOS,
Nmap, Symantec AV, Arpwatch, Named, Squid, Windows event logs, etc
,etc,

 Copyright 2007 Daniel B. Cid

Concepts

● OSSEC does “security log analysis”
➔ It is not a log management tool
➔ Only stores alerts, not every single log
➔ I still recommend log management and long term storage of

ALL logs

● Security Log Analysis can be called LID(S)
➔ Log-based Intrusion Detection System
➔ Every application or system generates some kind of log.

There must be some interesting information on them!
➔ We could even call it OSSEC LIDS, since some users only

use the log analysis side of OSSEC

 Copyright 2007 Daniel B. Cid

LIDS benefits
● Cheap to implement

➔ OSSEC is free, for example
➔ Does not require expensive hardware

● High visibility of encrypted protocols
➔ SSHD and SSL traffic are good examples

● Visibility of system activity (kernel, internal users, etc)

● Requires full centralized logging to be useful

● Logs are easy to parse
➔ Compared to network packets (at least)
➔ Although a log standard would make it easier

 Copyright 2007 Daniel B. Cid

Installing OSSEC

● Simple and easy
➔ Two models:
 Local (when you have just one system to monitor)
 Client/Server for centralized analysis (recommended!)
➔ Select installation type and answer a few questions
➔ It will setup the appropriate permissions, create users, etc

● Installation Demo (of an older version 1.0)
tar -zxvf ossec*.tar.gz
cd ossec*
./install.sh
... (answer all questions – installation available in Polish too)
/var/ossec/bin/ossec-control start (after completed)

 Copyright 2007 Daniel B. Cid

Upgrading OSSEC

● Simpler than the install!
➔ It will keep your configuration and local rules
➔ Just choose the “upgrade” option when running the install.sh

script
● Upgrade Demo (from 1.0 to 1.2)

tar -zxvf ossec*.tar.gz
cd ossec*
./install.sh
...
 - You already have OSSEC installed. Do you want to update it? (y/n): y
 - Do you want to update the rules? (y/n): y
...
... (no more questions asked and OSSEC will even be restarted for you)

 Copyright 2007 Daniel B. Cid

Understanding OSSEC

● OSSEC two working models
➔ Local (useful when you have only one system to monitor)
➔ Agent/Server (recommended!)

● By default installed at /var/ossec
● Main configuration file at /var/ossec/etc/ossec.conf
● Decoders stored at /var/ossec/etc/decoders.xml
● Binaries at /var/ossec/bin/
● All rules at /var/ossec/rules/*.xml
● Alerts are stored at /var/ossec/logs/alerts.log
● Composed of multiple processes (all controlled by

ossec-control)

 Copyright 2007 Daniel B. Cid

Internal processes
● Remember the Secure by default?

➔ Installation script does the chroot, user creation, permissions,
etc

➔ User has no choice to run it “less secure”
● Each process with limited privileges and tasks

➔ Most of them running on chroot
➔ Most of them with separated unprivileged user

● Processes:
➔ Analysisd – on chroot as user ossec
➔ Remoted – on chroot as user ossecr
➔ Maild – on chroot as user ossecm
➔ Logcollector – as root, but only reads the logs, no analysis
➔ Agentd – on chroot as user ossec (agent only)

 Copyright 2007 Daniel B. Cid

Internal processes (2)
● Each daemon has a very limited task:

➔ Analysisd – Does all the analysis (main process)
➔ Remoted – Receives and forwards remote logs to analysisd
➔ Logcollector – Reads and forwards log files to analysisd (or

agentd on the agent)
➔ Agentd – Forwards logs to the server
➔ Maild – Sends e-mail alerts
➔ Execd – Executes the active responses
➔ Monitord – Monitors agent status, compresses and signs log

files, etc
● ossec-control manages the start and stop of all of

them

 Copyright 2007 Daniel B. Cid

OSSEC configuration
● Multiple sections, one for each process

➔ To configure logcollector to monitor one file:
<localfile>
 <log_format>apache</log_format>
 <location>/var/www/logs/error_log</location>
 </localfile>

➔ To configure analysisd to read a specific rules file:
<rules>
 <include>myrules.xml</include>
</rules>

➔ To configure remoted to accept remote syslog:
<remote>
 <connection>syslog</connection>
 <port>514</port>
 <allowed-ips>192.168.2.0/24</allowed-ips>
 </remote>

➔ Look at our manual/FAQ for all available options!

 Copyright 2007 Daniel B. Cid

Log flow (local)

● Generic log analysis flow breakdown (for ossec local)
➔ Log collecting is done by ossec-logcollector
➔ Analysis and decoding are done by ossec-analysisd
➔ Alerting is done by ossec-maild
➔ Active responses are done by ossec-execd

Collect

Analyze
Collect

Decode Alert

OSSEC Local

(ossec-analysisd) (ossec-maild)
(ossec-execd)(ossec-logcollector)

 Copyright 2007 Daniel B. Cid

Log flow (agent/server)

● Generic log analysis flow for client/server architecture
➔ Log collecting is done by ossec-logcollector
➔ Analysis and decoding are done by ossec-analysisd
➔ Alerting is done by ossec-maild
➔ Active responses are done by ossec-execd

Collect

Analyze
Collect

Decode Alert

OSSEC ServerOSSEC Agent

(ossec-analysisd) (ossec-maild)
(ossec-execd)(ossec-logcollector)

 Copyright 2007 Daniel B. Cid

Network communication

● Agent/Server network communication
➔ Compressed (zlib)
➔ Encrypted using pre-shared keys with blowfish
➔ By default uses UDP port 1514
➔ Multi-platform (Windows, Solaris, Linux, etc)

Agentd

Remoted

OSSEC Server

Agent 1

Agentd
Agent 2

Syslog
Device 1

Analysisd

UDP
port 1514

 Copyright 2007 Daniel B. Cid

Deep into Log Analysis

● Focus now on the main process (ossec-analysisd)
➔ It does the log decoding and analysis
➔ Hard worker!

● Log pre-decoding
● Log decoding
● Log Analysis
● Example of alerts

 Copyright 2007 Daniel B. Cid

Internal log flow

● Log flow inside analysisd
● Three main parts:

➔ Pre-decoding (extracts known fields, like time, etc)
➔ Decoding (using user-defined expressions)
➔ Signatures (using user-defined rules)

Pre-decoding

Log flow
(inside analysisd)

Log arrives
Decoding

User-defined
decoders

Signatures

User-defined
rules

 Copyright 2007 Daniel B. Cid

Log pre-Decoding (1)

● Extracts generic information from logs
➔ Hostname, program name and time from syslog header
➔ Logs must be well formated

● How OSSEC does it?
➔ Log comes in as:

Apr 13 13:00:01 enigma syslogd: restart
➔ How will it look like inside OSSEC?
 time/date -> Apr 13 13:00:01
 hostname -> enigma
 program_name -> syslogd
 log -> restart

 Copyright 2007 Daniel B. Cid

Log pre-Decoding (2)

● Decoding of a SSHD message:
➔ Log comes in as:

Apr 14 17:32:06 enigma sshd[1025]: Accepted password for root from
192.168.2.190 port 1618 ssh2

➔ How will it look like inside OSSEC after pre-Decoding?
 time/date -> Apr 14 17:32:06
 hostname -> enigma
 program_name -> sshd
 log -> Accepted password for root from 192.168.2.190 port ...

 Copyright 2007 Daniel B. Cid

Log pre-Decoding (3)

● Decoding of an ASL message (Mac users):
➔ Log comes in as:

Time 2006.12.28 15:53:55 UTC] [Facility auth] [Sender sshd] [PID 483]
[Message error: PAM: Authentication failure for username from
192.168.0.2] [Level 3] [UID -2] [GID -2] [Host mymac]

➔ How will it look like inside OSSEC after pre-Decoding?
 time/date -> Dec 28, 2006 15:53:55
 hostname -> mymac
 program_name -> sshd
 log -> error: PAM: Authentication failure for username from 192.168.0.2

 Copyright 2007 Daniel B. Cid

Log Decoding (1)

● Process to identify key information from logs
➔ Most of the time you don't need to worry about it
➔ OSSEC comes with hundreds of decoders by default
➔ Generally we want to extract source ip, user name, id ,etc
➔ User-defined list (XML) at decoders.xml
➔ Tree structure inside OSSEC

● How a log will look like after being decoded:
Apr 14 17:32:06 enigma sshd[1025]: Accepted password for root from
192.168.2.190 port 1618 ssh2

 time/date -> Apr 14 17:32:06
 hostname -> enigma
 program_name -> sshd
 log -> Accepted password for root from 192.168.2.190 port ...

srcip -> 192.168.2.190
user -> root

 Copyright 2007 Daniel B. Cid

Writing decoders 101
● Writing a decoder. What it requires?

➔ Decoders are all stored at etc/decoders.xml
➔ Choose a meaningful name so they can be referenced in the

rules
➔ Extract any relevant information that you may use in the rules

● sshd example:
➔ We want to extract the user name and source ip
➔ If program name was pre-decoded as sshd (remember pre-

decoding?), try this regular expression

<decoder name="sshd-success">
 <program_name>sshd</program_name>
 <regex>^Accepted \S+ for (\S+) from (\S+) port </regex>
 <order>user, srcip</order>
</decoder>

 Copyright 2007 Daniel B. Cid

Writing decoders 102
● Decoders guidelines

➔ Decoders must have either prematch or program_name
➔ regex is used to extract the fields
➔ order is used to specify what each field means
➔ Order can be: id, srcip, dstip, srcport, dstport, url, action, status,

user, location, etc
➔ Offset can be: “after_prematch” or “after_parent”

● Vsftpd example:
Sun Jun 4 22:08:39 2006 [pid 21611] [dcid] OK LOGIN: Client
"192.168.2.10"

<decoder name="vsftpd">
 <prematch>^\w\w\w \w\w\w\s+\d+ \S+ \d+ [pid \d+] </prematch>
 <regex offset="after_prematch">Client "(\d+.\d+.\d+.\d+)"$</regex>
 <order>srcip</order>
</decoder>

 Copyright 2007 Daniel B. Cid

Writing decoders 103
● Grouping multiple decoders under one parent

➔ Use parent tag to specify the parent of the decoder
➔ Will create a tree structure, where the sub-decoders are only

evaluated if their parent matched.

● sshd example 2:

<decoder name="sshd">
 <program_name>^sshd</program_name>
</decoder>

<decoder name="sshd-success">
 <parent>sshd</parent>
 <prematch>^Accepted</prematch>
 <regex offset="after_prematch">^ \S+ for (\S+) from (\S+) port </regex>
 <order>user, srcip</order>
</decoder>

 Copyright 2007 Daniel B. Cid

Writing decoders 103 (2)
● sshd example 3:

<decoder name="sshd">
 <program_name>^sshd</program_name>
</decoder>

<decoder name="sshd-success">
 <parent>sshd</parent>
 <prematch>^Accepted</prematch>
 <regex offset="after_prematch">^ \S+ for (\S+) from (\S+) port </regex>
 <order>user, srcip</order>
</decoder>

<decoder name="ssh-failed">
 <parent>sshd</parent>
 <prematch>^Failed \S+ </prematch>
 <regex offset="after_prematch">^for (\S+) from (\S+) port </regex>
 <order>user, srcip</order>
</decoder>

 Copyright 2007 Daniel B. Cid

Writing decoders 103 (3)

● Apache access log example:
➔ We extract the srcip, id and url

192.168.2.190 - - [18/Jan/2006:13:10:06 -0500] "GET /xxx.html HTTP/1.1"
200 1732

<decoder name="web-accesslog">
 <type>web-log</type>
 <prematch>^\d+.\d+.\d+.\d+ </prematch>
 <regex>^(\d+.\d+.\d+.\d+) \S+ \S+ [\S+ \S\d+] </regex>
 <regex>"\w+ (\S+) HTTP\S+ (\d+) </regex>
 <order>srcip, url, id</order>
</decoder>

 Copyright 2007 Daniel B. Cid

Log Rules (1)

● Next step after decoding is to check the rules
➔ Internally stored in a tree structure
➔ User-defined XML
➔ Very easy to write!
➔ Allows to match based on decoded information
➔ OSSEC comes with more than 400 rules by default!

● Two types of rules:
➔ Atomic (based on a single event)
➔ Composite (based on patterns across multiple logs)

 Copyright 2007 Daniel B. Cid

Writing your own rules 101

● Writing your first rule. What it requires?
➔ A Rule id (any integer)
➔ A Level - from 0 (lowest) to 15 (highest)
➔ Level 0 is ignored, not alerted at all
➔ Pattern - anything from “regex”, to “srcip”, “id”, “user”, etc

● First example (simple sshd rule)
➔ If log was decoded as sshd, generate rule “111”

<rule id = "111" level = "5">
<decoded_as>sshd</decoded_as>
<description>Logging every decoded sshd message</description>
</rule>

 Copyright 2007 Daniel B. Cid

Writing your own rules 102

● Second rule, for failed sshd messages
➔ We will create a second rule, dependent on the first
➔ Higher severity (level 7)
➔ Will only be executed if the first one matches (if_sid)
➔ Match is a simple pattern matching (looking for Failed pass)

<rule id = "111" level = "5">
 <decoded_as>sshd</decoded_as>
 <description>Logging every decoded sshd message</description>
</rule>

<rule id=”122” level=”7”>
 <if_sid>111</if_sid>
 <match>^Failed password</match>
 <description>Failed password attempt</description>
</rule>

 Copyright 2007 Daniel B. Cid

Writing your own rules 103
● Third rule, for failed sshd messages on hostname

“mainserver” from anywhere outside 192.168.2.0/24
➔ We will create a third rule, dependent on the second
➔ Will only be called if the second one matches!

<rule id=”122” level=”7”>
 <if_sid>111</if_sid>
 <match>^Failed password</match>
 <description>Failed password attempt</description>
</rule>

<rule id=”133” level=”13”>
 <if_sid>122</if_sid>
 <hostname>^mainserver</hostname>
 <srcip>!192.168.2.0/24</srcip>
 <description>Higher severity! Failure on the main server</description>
</rule>

 Copyright 2007 Daniel B. Cid

 Writing your own rules 103(2)

● Rule for Apache web logs
➔ We will create one generic rule for all web logs (501)
➔ One sub-rule to alert on ids 4xx or 5xx (HTTP errors)
➔ We use here the “id” tag, which is also set in the decoder

<rule id=”501” level=”3”>
 <decoded_as>web_log</decoded_as>
 <description>Generic rule for apache logs</description>
</rule>

<rule id=”502” level=”6”>
 <if_sid>501</if_sid>
 <id>^4|^5</id>
 <description>Log with id 4xx or 5xx</description>
</rule>

 Copyright 2007 Daniel B. Cid

Rule structure after ...

● After our first five rules, this is how the internal
structure would look like.
➔ Not a flat format (like most log analysis tools)!
➔ Very fast! Non-sshd messages are only checked against the

first rule (111), not the sub ones
➔ Average of only 7/8 rules per log, instead of 400 (what we

have enabled by default)

111

133

122

Log Arrives

Try first one (123); If matches,
try sub-rules; ...

501 xxx

If doesn't match, try next one ...

 Copyright 2007 Daniel B. Cid

 Writing your own rules 103(3)
● A few more advanced rule options

➔ Rule for successful sshd logins
➔ Policy-based options, based on time, day of the week, etc
➔ You can use groups to classify your rules better

<rule id = "153" level = "5">
 <if_sid>111</if_sid>
 <match>Accepted password </match>
 <description>Successful login</description>
 <group>login_ok</group>
</rule>

<rule id=”154” level=”10”>
 <if_sid>153</if_sid>
 <time>6 pm - 8:30 am</time>
 <description>Alert! Logins outside business hours!</description>
 <group>login_ok,policy_violation</group>
</rule>

 Copyright 2007 Daniel B. Cid

Writing your own rules 200
● Composite rules

➔ Rule for multiple failed password attempts
➔ We set frequency and timeframe
➔ if_matched_sid: If we see this rule more than X times within

Y seconds.
➔ same_source_ip: If they were decoded from same IP.

<rule id=”133” level=”7”>
 <if_sid>111</if_sid>
 <match>^Failed password</match>
 <description>Failed password attempt</description>
</rule>

<rule id=”1050” level=”11” frequency=”5” timeframe=”120”>
 <if_matched_sid>133</if_matched_sid>
 <same_source_ip />
 <description>Multiple failed attempts from same IP!</description>
</rule>

 Copyright 2007 Daniel B. Cid

Rules in real world

● Do not modify default rules
➔ They are overwritten on every upgrade
➔ Use local_rules.xml instead (not modified during upgrade)
➔ Use and abuse of if_sid, if_group (remember, classify your

rules under groups), etc
➔ Use an ID within the range 100000-109999 (user assigned)

● If adding support for new rules or new log formats
➔ Send them to us, so we can include in ossec
➔ We will assign a range ID for your rules

 Copyright 2007 Daniel B. Cid

Rules in real world (2)

● Alerting on every authentication success outside
business hours
➔ Every authentication message is classified as “authentication

success” (why we use if_group)
➔ Add to local_rules.xml:

<rule id="100005" level="10">
 <if_group>authentication_success</if_group>
 <time>6 pm - 7:30 am</time>
 <description>Login during non-business hours.</description>
 </rule>

 Copyright 2007 Daniel B. Cid

Rules in real world (3)

● Changing frequency or severity of a specific rule
➔ Rule 5712 alerts on SSHD brute forces after 6 failed attempts
➔ To increase the frequency, just overwrite this rule with a

higher value. Same applies to severity (level).
➔ You can change any value from the original rule by

overwriting it
➔ Add to local_rules.xml:

<rule id="5712" level="10" frequency="20" overwrite=”yes”>
 <if_matched_sid>5710</if_matched_sid>
 <description>SSHD brute force trying to get access to </description>
 <description>the system.</description>
 <group>authentication_failures,</group>
 </rule>

 Copyright 2007 Daniel B. Cid

LID Examples - Squid logs
● Rule to detect internal hosts scanning the outside

➔ Useful to detect worms, vulnerable systems or just malicious
intent

➔ Will fire if same internal system generates multiple 500/600
error codes on different URLs

 <rule id="35009" level="5">
 <if_sid>35002</if_sid>
 <id>^5|^6</id>
 <description>Squid 500/600 error code (server error).</description>
 </rule>
<rule id="35058" level="10" frequency="6" timeframe="240">
 <if_matched_sid>35009</if_matched_sid>
 <same_source_ip />
 <different_url />
 <description>Multiple 500/600 error codes (server error).</description>
 </rule>

 Copyright 2007 Daniel B. Cid

LID Examples - Squid logs 2

● Indication of an internal compromised system:
OSSEC HIDS Notification.

Received From: (proxy) 10.1.2.3->/var/log/squid/access.log
Rule: 35058 fired (level 10) -> "Multiple 500/600 error codes (server error)."
Portion of the log(s):

179993 1.2.3.4 TCP_MISS/504 1430 GET http://xx.com/cgi/stats/awstats.pl -
NONE/- text/html

179504 1.2.3.4 TCP_MISS/504 1410 GET http://xx.com/awstats.pl - NONE/-
text/html

179493 1.2.3.4 TCP_MISS/504 1422 GET http://xx2.com/stats/awstats.pl -
NONE/- text/html

179494 1.2.3.4 TCP_MISS/504 1438 GET http://xx2.com//cgi-
bin/stats/awstats.pl - NONE/- text/html

179507 1.2.3.4 TCP_MISS/504 1426 GET http://xx3.com/awstats/awstats.pl -
NONE/- text/html

 Copyright 2007 Daniel B. Cid

LID Examples - Web logs

● Rule to detect large URLs
➔ Any URL longer than 2900 characters is very suspicious

 <rule id="31115" level="13" maxsize="2900">
 <if_sid>31100</if_sid>
 <description>URL too long. Higher than allowed on most </description>
 <description>browsers. Possible attack.</description>
 <group>invalid_access,</group>
 </rule>

 Copyright 2007 Daniel B. Cid

LID Examples - Web logs 2

● Indication of an attack detected
➔ Now, what if you see that from an internal box?

OSSEC HIDS Notification.
2007 Feb 18 20:52:27

Received From: (jul) 192.168.2.0->/var/log/apache/access_log
Rule: 31115 fired (level 13) -> "URL too long. Higher than allowed on most

browsers."
Portion of the log(s):

142.167.9.242 - - [18/Feb/2007:21:43:49 -0400] "SEARCH
/\x90\xc9\xc9\xc9\xc9\xc9

\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\
9\xc99\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\x9
\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9
\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9...

 Copyright 2007 Daniel B. Cid

LID Examples – Snort logs
● Multiple IDS events from same source IP address

2007 May 08 14:10:58 (jul) 192.168.2.0->/var/log/snort/alert
Rule: 20152 (level 10) -> 'Multiple IDS alerts from same IP Address.'
[**] [1:648:7] SHELLCODE x86 NOOP [**][Classification: Executable code was

detected] [Priority: 1] 142.167.24.154:1238 -> 192.168.2.32:80
[**] [1:648:7] SHELLCODE x86 NOOP [**][Classification: Executable code was

detected] [Priority: 1] 142.167.24.154:1238 -> 192.168.2.32:80
[**] [1:648:7] SHELLCODE x86 NOOP [**][Classification: Executable code was

detected] [Priority: 1] 142.167.24.154:1238 -> 192.168.2.32:80
[**] [119:4:1] (http_inspect) BARE BYTE UNICODE ENCODING

[Classification: Preprocessor] 142.167.24.154:1238 -> 192.168.2.32:80
[**] [119:15:1] (http_inspect) OVERSIZE REQUEST-URI DIRECTORY

[**][Classification: access to a potentially vulnerable web application]
[Priority: 2] 142.167.24.154:1238 -> 192.168.2.32:80

[**] [1:1070:9] WEB-MISC WebDAV search access Classification: access to a
potentially vulnerable application] 142.167.24.154:1238 -> 192.168.2.32:80

 Copyright 2007 Daniel B. Cid

LID Examples - Auth logs

● Brute force attempts
● Not only for SSHD, but also ftpd, imapd, webmails, etc
OSSEC HIDS Notification.
2007 Feb 21 05:37:59

Received From: enigma->/var/log/authlog
Rule: 5712 fired (level 10) -> "SSHD brute force trying to get access to the sys
tem."
Portion of the log(s):

Feb 21 05:37:58 enigma sshd[7235]: Failed password for invalid user admin
from 125.152.17.236 port 42198 ssh2

Feb 21 05:37:58 enigma sshd[14507]: Invalid user admin from 125.152.17.236
Feb 21 05:37:56 enigma sshd[10566]: Failed password for invalid user admin

from 125.152.17.236 port 42132 ssh2
Feb 21 05:37:56 enigma sshd[11502]: Invalid user admin from 125.152.17.236

 Copyright 2007 Daniel B. Cid

LID Examples - Auth logs 2
● Brute force attempts followed by a success
Rule: 5720 (level 10) -> 'Multiple SSHD authentication failures.'
Src IP: 125.192.xx.xx
Feb 11 09:31:58 wpor sshd[4565]: Failed password for root from

125.192.xx.xx port 42976 ssh2
Feb 11 09:31:58 wpor sshd[4565]: Failed password for admin from

125.192.xx.xx port 42976 ssh2
Feb 11 09:31:58 wpor sshd[4565]: Failed password for admin from

125.192.xx.xx port 42976 ssh2

Rule: 40112 (level 12) -> 'Multiple authentication failures followed by a
success.'

Src IP: 125.192.67.136
User: admin
Feb 11 09:31:58 wpor sshd[7235]: Accepted password for admin from

125.192.xx.xx port 42198 ssh2

 Copyright 2007 Daniel B. Cid

Conclusion

● OSSEC is very extensible and provides out of the box
functionality

● Try it out and check for yourself! :)
● Lots of new features planned for the future

● Look at our manual and FAQ for more information:
http://www.ossec.net

● For questions and support, subscribe to our mailing list
or visit us at #ossec on freenode

http://www.ossec.net/

 Copyright 2007 Daniel B. Cid

QUESTIONS ?

