
04/05/07 1

Luca Carettoni – l.carettoni@securenetwork.it
Claudio Merloni – c.merloni@securenetwork.it

String Analysis for the Detection String Analysis for the Detection
of Web Application Flawsof Web Application Flaws

CONFidence 2007 - May 12-13, Kraków, Poland

04/05/07 2

Web Applications

 Web Applications are everyday more pervasive
 Easy to implement, yet very powerful way to give

access to services and content
 Can be made of a handful of simple scripts or a

very complex architecture
 Today, web application development often doesn't

take into consideration the specific risks coming
from the exposure to the web itself

04/05/07 3

Web Application Security

 Giving access to web application means asking
the world to send HTTP request

 Attackers more and more actively look for web
application flaws as they are:

− surprisingly common
− often the key to subvert the victim's data and

networks
− it is quite easy for an attacker to hide his identity

using well known anonymizing techniques

04/05/07 4

Input Validation - 1

 Every data handled by a web application should
be considered unsafe

 HTTP request are the primary input feed
 Attackers can alter any part of an HTTP request:

pieces of info coming from a client (also if subject
to client side validation) should never be
considered safe:

− GET and POST parameters
− request headers
− cookies, and so on.

04/05/07 5

Input Validation - 2

 Tampering the input an attacker can perform a
variety of attacks, for example:

− injection of SQL code, OS commands, and so on
− injection of client side scripts to compromise other

users' session data and credentials or attack the
local machine

− buffer overflows
− directory traversal to disclose server-side sensitive

info
 Complete input filtering is often too complex to

handle

04/05/07 6

Input Validation - 3

 SQL injection example:
$query = sprintf(“SELECT * FROM %s WHERE owner=‘%s’ AND nickname=‘%s’”, $this-

>table, $this->owner,$alias);
$res = $this->dbh->query($query);

What if $alias was ‘ UNION ALL SELECT * FROM address WHERE ‘1’=‘1 ?

 Directory traversal example:
<?php $template = 'blue.php';

if (is_set($_COOKIE['TEMPLATE']))
$template = $_COOKIE['TEMPLATE'];
include ("/home/users/phpguru/templates/" . $template); ?>

What if the attacker tampered the HTTP request the following way?

GET /vulnerable.php HTTP/1.0
Cookie: TEMPLATE=../../../../../../../../../etc/passwd

04/05/07 7

Input Validation - 4

 Path Based Access Control

public class PathBasedAccessControl extends LessonAdapter {
[...]
String dir = s.getContext().getRealPath("/images"); // A
[...]
String file = s.getParser().getRawParameter(FILE, ""); // B
[...]
File f = new File((dir + "\\" + file).replaceAll("\\\\","/")); // C
}

A: we are in /images/ (Absolute Path on my Linux box: /var/lib/tomcat-
5.5/webapps/WebGoat/)

B: from the HTML form, we take the FILE input parameter
C: Creating a File object...

04/05/07 8

Input Validation - 5

 We can request a file inside the allowed images
folder:

− right.gif
 But we can also try to break out of the web root

with a correctly crafted path:
− %2e%2e%2f%2e%2e%2f2e%2e%2f2e%2e%2f2e%2e%

2f2e%2e%2fetc/passwd

04/05/07 9

How to deal with that?

 The solution is the combination of secure desing and
development, testing, training and review

 Directly filtering before they reach the application
 Interacting with the application or analyzing its source code:

− Source Code Analyzer

− Web Application Scanner

− Database Scanner

− Binary Analysis Tool

− Runtime Analysis Tool

− Configuration Scanner

− HTTP Proxy

 Source analysis: pattern matching or data flow analysis

04/05/07 10

Checking the input

 Input processing in web applications is mainly
performed through the exchange of text strings
between the client and the server. That's why we
focus on methods working on strings.

 Validating the input: checkpoint
 Blacklist: defining what bad input

is. Then escaping, substituting,
and so on

 Whitelist: defining what good
input is and filtering anything that
doesn't match

04/05/07 11

Hotspot - 1

 We use the term hotspot to identify the function
calls that in a vulnerable application would be
exploited as the result of unvalidated input

 Every hotspot is associated to a specific
signature, composed by type of vulnerability,
fully qualified method name, number and type
of parameters

 We are interested in tracing the possible values
that hotspots' String and StringBuffer parameters
could take during the application execution

04/05/07 12

Hotspot - 2

 Path traversal: methods accessing the filesystem.
 java.io.File(java.lang.String)
 java.io.FileReader(java.lang.String), ...

 SQL injection: database connectivity.
 java.sql.Statement.executeQuery(java.lang.String)
 java.sql.Connection.prepareStatement(java.lang.String), ...

 Command injection: command execution, class loading
and so on.

 java.lang.Runtime.exec(java.lang.String, …)
 java.lang.System.load(java.lang.String), ...

04/05/07 13

Automaton definition

 In a single execution a variable will take, in a
specific execution step, a well defined value

 Considering every possible execution we obtain
the set of values that the variable could take

 Language: a finite-state automaton representing
the set of those possible values

 The core of our analysis method relies on
evaluating the language associated to every
hotspots' string parameter.

04/05/07 14

Analysis method

 Phase 1: parsing the
application source code
looking for hotspots

 Phase 2: Building the
language associated
to every candidate
parameter

 Phase 3: Comparing
those languages with
our knowledge base of
safe languages

04/05/07 15

Language comparison

 Unvalidated input: using the input
vectors (eg. par1) it is possible to
modify hotspot parameters (eg. qry)

 The hotspot parameter could then
take a value which isn't valid SQL

 In our knowledge base we defined
the safe language for the hotspot as
the common SQL language

 The complement of this language
define the values that qry shouldn't
be allowed to take

 If the intersection between
language built by analyzing the
application data flow and the
complement of our safe language is
not null then there is a potential flaw

import java.servlet.*;

…

public class Servlet extends HttpServlet{

public void doGet(…){

 String str1 =
request.getParameter(“par1”);

 String qry = “SELECT pass FROM table WHERE
myRow=‘“;

 qry = qry.concat(str1);

 qry = qry.concat(“‘”);

 …

 Connection cn = … ;

 Statement cmd = cn.createStatement();

 ResultSet res = cmd.executeQuery(qry);

 …

}}

04/05/07 16

Building a tool - 1

 Tightly integrated into the Eclipse IDE
 Code / Compile / Check / Fix
 No user intervention needed in the analysis phase
 Different level of severity in scanning and

reporting
 Vulnerabilities defined as plugins that describe the

automaton associated

04/05/07 17

Building a tool - 2

 The analysis is performed using both bytecode
(data-flow) and source code (reporting)

 Project resources scanning based both on Eclipse
Framework and on raw filesystem analysis:

− The Eclipse Framework define source locations,
classe locations and provide methods to quickly
navigate the project structure

− Filesystem resources can be easily analyzed using
both source and class Java reflection

04/05/07 18

Testing results

 Testing has been conducted on the OWASP
WebGoat project (v3.7, 55 Java classes, 16160
lines)

 Our tool:
− Analysis time: 483 sec.
− Vulnerabilities found: 16 SQL Injection, 16 Path Traversal

 LAPSE:
− Analysis time: 32 sec.
− Vulnerabilities found: 2 Command Injection, 1 Cross-Site

Scripting, 13 SQL Injection

04/05/07 19

Let's see it!

DEMO
DEMO

04/05/07 20

Summing up

 It is nowadays critical to enforce security policies
on the whole web application lifecycle

 Source code static analysis cannot completely
solve the web app security problem but it's
definitely an important step in the right direction

 Our approach is more complex than others but
gives more accurate results

 Tightly integrating the security analysis with the
IDE can be the key to train the developers about
the secure coding practices

04/05/07 21

Future work

 Build a detector knowledge base, able to
effectively identify at least the most common
vulnerabilities

 Automatically parse project resources contained
inside j2ee archives.

 Automatically compile Jsp resources to servlets
 Implement the backward slice feature
 Rework the data flow analysis components to

make the tool able to process more programming
languages

04/05/07 22

Luca “ikki” Carettoni - l.carettoni@securenetwork.it
Claudio “paper” Merloni - c.merloni@securenetwork.it

SecureNetwork S.r.l.: www.securenetwork.it

Questions?

